Skip to main content
Log in

Various refined theories applied to damped viscoelastic beams and circular rings

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this work, a number of enhanced finite beam elements has been tested considering layered structures with viscoelastic layers. The viscoelastic properties have been defined with the complex modulus approach, and the equations of motion have been derived using the principle of virtual displacement. Higher-order theories, based on equivalent single-layer and the layerwise approaches, have been obtained with the Carrera unified formulation, which makes it possible to generate an infinite number of kinematic approximations. Both Lagrange-type elements and higher-order zigzag theories have been developed within the layerwise approach. On the other hand, Taylor-like expansions and Murakami-type zigzag functions have been used to conceive the equivalent single-layer models. Numerical simulations have been performed considering symmetric and asymmetric laminated structures with rectangular and circular cross sections. The results are reported in terms of frequencies, modal loss factors, and frequency responses. The obtained results have been compared with solutions published in the literature and with solid finite element models. The accuracy of the different formulations has been found to be problem dependent to a great extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roylance, D.: Engineering viscoelasticity. Dep. Mater. Sci. Eng. Mass. Inst. Technol. Camb. MA 2139, 1–37 (2001)

    Google Scholar 

  2. Rouleau, L., Deü, J.-F., Legay, A., Sigrist, J.-F., Lay, F.L., Curtoud, P.M.: A component mode synthesis approach for dynamic analysis of viscoelastically damped structures. In: Proceedings of the 10th World Congress on Computational Mechanics (WCCM 2012), vol. 229, p. 231 (2012)

  3. Barkanov, E., Skukis, E., Petitjean, B.: Characterisation of viscoelastic layers in sandwich panels via an inverse technique. J. Sound Vib. 327(3), 402–412 (2009)

    Article  Google Scholar 

  4. Slater, J.C., Belvin, W.K., Inman, D.J.: A survey of modern methods for modeling frequency dependent damping in finite element models. In: Proceedings-Spie the International Society for Optical Engineering, pp. 1508–1508. Spie International Society for Optical (1993)

  5. Zhang, S.H., Chen, H.L.: A study on the damping characteristics of laminated composites with integral viscoelastic layers. Compos. Struct. 74(1), 63–69 (2006)

    Article  Google Scholar 

  6. Moita, J.S., Araújo, A.L., Mota Soares, C.M., Mota Soares, C.A.: Finite element model for damping optimization of viscoelastic sandwich structures. Adv. Eng. Softw. 66, 34–39 (2013)

    Article  Google Scholar 

  7. Ferreira, A.J.M., Araújo, A.L., Neves, A.M.A., Rodrigues, J.D., Carrera, E., Cinefra, M., Mota Soares, C.M.: A finite element model using a unified formulation for the analysis of viscoelastic sandwich laminates. Compos. B Eng. 45(1), 1258–1264 (2013)

    Article  Google Scholar 

  8. Abdoun, F., Azrar, L., Daya, E.M., Potier-Ferry, M.: Forced harmonic response of viscoelastic structures by an asymptotic numerical method. Comput. Struct. 87(1), 91–100 (2009)

    Article  Google Scholar 

  9. Bilasse, M., Daya, E.M., Azrar, L.: Linear and nonlinear vibrations analysis of viscoelastic sandwich beams. J. Sound Vib. 329, 4950–4969 (2010)

    Article  Google Scholar 

  10. Kerwin Jr., E.M.: Damping of flexural waves by a constrained viscoelastic layer. J. Acoust. Soc. Am. 31(7), 952–962 (1959)

    Article  Google Scholar 

  11. DiTaranto, R.A.: Theory of vibratory bending for elastic and viscoelastic layered finite-length beams. J. Appl. Mech. 32(4), 881–886 (1965)

    Article  Google Scholar 

  12. Mead, D.J., Markus, S.: The forced vibration of a three-layer damped sandwich beam with arbitrary boundary conditions. J. Sound Vib. 10, 163–175 (1969)

    Article  MATH  Google Scholar 

  13. Yan, M.-J., Dowell, E.H.: Governing equations for vibrating constrained-layer damping sandwich plates and beams. J. Appl. Mech. 39(4), 1041–1046 (1972)

    Article  Google Scholar 

  14. Rao, D.K.: Frequency and loss factors of sandwich beams under various boundary conditions. J. Mech. Eng. Sci. 20(5), 271–282 (1978)

    Article  Google Scholar 

  15. Durocher, L.L., Solecki, R.: Harmonic vibrations of isotropic, elastic, and elastic/viscoelastic three-layered plates. J. Acoust. Soc. Am. 60(1), 105–112 (1976)

    Article  MATH  Google Scholar 

  16. Douglas, B.E.: Transverse compressional damping in the vibratory response of elastic-viscoelastic-elastic beams. AIAA J. 16(9), 925–930 (1978)

    Article  Google Scholar 

  17. Sisemore, C.L., Davernnes, C.M.: Transverse vibration of elastic-viscoelastic-elastic sandwich beams: compression-experimental and analytical study. J. Sound Vib. 252(1), 155–167 (2002)

    Article  Google Scholar 

  18. Xie, Z., Shepard Jr., W.S.: An enhanced beam model for constrained layer damping and a parameter study of damping contribution. J. Sound Vib. 319, 1271–1284 (2009)

    Article  Google Scholar 

  19. Kung, S.-W., Singh, R.: Vibratian analyis of beams with multiple constrained layer damping patches. J. Sound Vib. 212(5), 781–805 (1998)

    Article  Google Scholar 

  20. Yu, S.C., Huang, S.C.: Vibration of a three-layered viscoelastic sandwich circular plate. Int. J. Mech. Sci. 43, 2215–2236 (2001)

    Article  MATH  Google Scholar 

  21. Lu, Y.P., DiTaranto, R.A., Douglas, B.E.: Forced response of a discontinuosly constrained damped ring. J. Acoust. Soc. Am. 54(1), 74–79 (1973)

    Article  Google Scholar 

  22. Rikards, R., Chate, A., Barkanov, E.: Finite element analysis of damping the vibrations of laminated composites. Comput. Struct. 47(6), 1005–1015 (1993)

    Article  MATH  Google Scholar 

  23. Koutsawa, Y., Charpentier, I., Daya, M.C.E.M., Cherkaoui, M.: A generic approach for the solution of nonlinear residual equations. Part i: The diamant toolbox. Comput. Methods Appl. Mech. Eng. 198(3), 572–577 (2008)

    Article  MATH  Google Scholar 

  24. Berthelot, J.-M., Assarar, M., Sefrani, Y., El Mahi, A.: Damping analysis of composite materials and structures. Compos. Struct. 85(3), 189–204 (2008)

    Article  Google Scholar 

  25. Mundo, D., Treviso, A., Tournour, M.: A c0-continuous rzt beam element for the damped response of laminated structures. Compos. Struct. 131, 987–994 (2015)

    Article  Google Scholar 

  26. Altenbach, H., Korjakin, A., Rikards, R., Chate, A.: Free damped vibrations of sandwich shells of revolution. J. Sandwich Struct. Mater. 3, 171–196 (2001)

    Article  Google Scholar 

  27. Nennig, B., Chazot, J.-D., Chettah, A.: Harmonic response computation of viscoelastic multilayered structures using a zpst shell element. Comput. Struct. 89, 2522–2530 (2011)

    Article  Google Scholar 

  28. Abed-Merain, F., Kpeky, F., Boudaoud, H., Daya, E.M.: Modeling of viscoelastic sandwich beams using solidshell finite elements. Compos. Struct. 133, 105–116 (2015)

    Article  Google Scholar 

  29. Plagianakos, T., Saravanos, D.A.: High-order layerwise finite element for the damped free-vibration response of thick composite and sandwich composite plates. Int. J. Numer. Meth. Eng. 77(11), 1593–1626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Carrera, E., Filippi, M., Regalli, A.M.: Layer-wise analyses of compact and thin-walled beams made of viscoelastic materials. J. Vib. Acoust. 138(6), 064501–064509 (2016)

    Article  Google Scholar 

  31. Filippi, M., Carrera, E.: Bending and vibrations analyses of laminated beams by using a zig-zag-layer-wise theory. Compos. B Eng. 98, 269–280 (2016)

    Article  Google Scholar 

  32. Carrera, E., Giunta, G., Petrolo, M.: Beam Structures. Classical and Advanced Theories. Wiley, New York (2011)

    Book  MATH  Google Scholar 

  33. Carrera, E., Filippi, M.: Variable kinematic one-dimensional finite elements for the analysis of rotors made of composite materials. J. Eng. Gas Turbines Power 136(9), 092501 (2014)

    Article  Google Scholar 

  34. Murakami, H.: Laminated composite theory with improved in-plane responses. J. Appl. Mech. 53, 661–666 (1986)

    Article  MATH  Google Scholar 

  35. Carrera, E., Petrolo, M.: Refined beam elements with only displacement variables and plate/shell capabilities. Meccanica 47, 537–556 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. Carrera, E., Petrolo, M.: Refined one-dimensional formulations for laminated structure analysis. AIAA J. 50, 176–189 (2012)

    Article  MATH  Google Scholar 

  37. Lu, Y.P., Douglas, B.E., Thomas, E.V.: Mechanical impedance of damped three-layered sandwich rings. AIAA J. 11(3), 300–304 (1973)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Carrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippi, M., Carrera, E. Various refined theories applied to damped viscoelastic beams and circular rings. Acta Mech 228, 4235–4248 (2017). https://doi.org/10.1007/s00707-017-1948-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1948-7

Navigation