Skip to main content
Log in

Vibratory control of a linear system by addition of a chain of nonlinear oscillators

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An N-degree-of-freedom model consisting of a single-degree-of-freedom linear system coupled to a chain of \((N-1)\) light nonlinear oscillators is studied. The connection between the chain and the single-degree-of-freedom system is supposed to be linear. Time multi-scale system behaviors at fast and slow time scales are investigated and lead to the detection of the slow invariant manifold and equilibrium and singular points. These points correspond to periodic regimes and strongly modulated responses, respectively. These analytical developments are used to provide evidence of transfer of vibratory energy of the main system to the chain in the form of localized modes during periodic regimes and extreme energy exchanges between modes when the overall structure faces singularities. Furthermore, analytical predictions at slow time scale and nonlinear normal modes of the system are compared with numerical results obtained from direct time integration of the system equations, showing a good agreement between them. Finally, we present a procedure showing how these analytical developments can be used to study a system where the main structure is replaced by a multi-degree-of-freedom linear system, by projecting its dynamics on one of its modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gendelman, O.V., Manevitch, L.I., Vakakis, A.F., M’Closkey, R.: Energy pumping in nonlinear mechanical oscillators: part I—dynamics of the underlying Hamiltonian systems. J. Appl. Mech. 68, 34–41 (2000)

    Article  MATH  Google Scholar 

  2. Vakakis, A.F., Gendelman, O.V.: Energy pumping in nonlinear mechanical oscillators: part II—resonance capture. J. Appl. Mech. 68, 42–48 (2000)

    Article  MATH  Google Scholar 

  3. Gendelman, O.V.: Transition of energy to a nonlinear localized mode in a highly asymmetric system of two oscillators. Nonlinear Dyn. 25, 237–253 (2001)

    Article  MATH  Google Scholar 

  4. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFarland, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems. Springer, Dordrecht (2009)

    MATH  Google Scholar 

  5. Zhu, S.J., Zheng, Y.F., Fu, Y.M.: Analysis of non-linear dynamics of a two-degree-of- freedom vibration system with non-linear damping and non-linear spring. J. Sound Vib. 271, 15–24 (2004)

    Article  Google Scholar 

  6. Gatti, G., Brennan, M.J.: On the effects of system parameters on the response of a harmonically excited system consisting of weakly coupled nonlinear and linear oscillators. J. Sound Vib. 330, 4538–4550 (2011)

    Article  Google Scholar 

  7. Sapsis, T.P., Vakakis, A.F., Bergman, L.A.: Effect of stochasticity on targeted energy transfer from a linear medium to a strongly nonlinear attachment. Prob. Eng. Mech. 26, 119–133 (2011)

    Article  Google Scholar 

  8. Luongo, A., Zulli, D.: Aeroelastic instability analysis of NES-controlled systems via a mixed multiple scale/harmonic balance method. J. Vib. Control 20, 1985–1998 (2014)

    Article  MATH  Google Scholar 

  9. Charlemagne, S., Lamarque, C.H., Ture Savadkoohi, A.: Dynamics and energy exchanges between a linear oscillator and a nonlinear absorber with local and global potentials. J. Sound Vib. 376, 33–47 (2016)

    Article  Google Scholar 

  10. Lee, Y.S., Vakakis, A.F., Bergman, L.A., McFarland, D.M., Kerschen, G.: Suppressing aeroelastic instability using broadband passive targeted energy transfers, part 1: theory. AIAA J. 45, 693–711 (2007)

    Article  Google Scholar 

  11. Shao, J., Cochelin, B.: Theoretical and numerical study of targeted energy transfer inside an acoustic cavity by a non-linear membrane absorber. Int. J. Non-Linear Mech. 64, 85–92 (2014)

    Article  Google Scholar 

  12. Gendelman, O.V.: Targeted energy transfer in systems with non-polynomial nonlinearity. J. Sound Vib. 315, 732–745 (2008)

    Article  Google Scholar 

  13. Gendelman, O.V.: Analytic treatment of a system with a vibro-impact nonlinear energy sink. J. Sound Vib. 331, 4599–4608 (2012)

    Article  Google Scholar 

  14. Ture Savadkoohi, A., Lamarque, C.H.: Vibratory energy localization by non-smooth energy sink with time-varying mass. Appl. Non-Linear Dyn. Syst. 93, 429–442 (2014)

    MathSciNet  Google Scholar 

  15. Lamarque, C.H., Ture Savadkoohi, A.: Dynamical behavior of a Bouc-Wen type oscillator coupled to a nonlinear energy sink. Meccanica 49, 1917–1928 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Weiss, M., Ture Savadkoohi, A., Gendelman, O.V., Lamarque, C.H.: Dynamical behavior of a mechanical system including Saint-Venant component coupled to a nonlinear energy sink. Int. J. Non-Linear Mech. 63, 10–18 (2014)

    Article  Google Scholar 

  17. McFarland, D., Kerschen, G., Kowtko, J.J., Lee, Y., Bergman, L., Vakakis, A.F.: Experimental investigation of targeted energy transfers in strongly and nonlinearly coupled oscillators. J. Acoust. Soc. Am. 118, 791–799 (2005)

    Article  MATH  Google Scholar 

  18. Kerschen, G., McFarland, D., Kowtko, J.J., Lee, Y.S., Bergman, L., Vakakis, A.F.: Experimental demonstration of transient resonance capture in a system of two coupled oscillators with essential stiffness nonlinearity. J. Sound Vib. 299, 822–838 (2007)

    Article  MATH  Google Scholar 

  19. Vakakis, A.F., Manevitch, L.I., Gendelman, O.V., Bergman, L.A.: Dynamics of linear discrete systems connected to local, essentially non-linear attachments. J. Sound Vib. 264, 559–577 (2003)

    Article  Google Scholar 

  20. Vakakis, A.F., McFarland, D.M., Bergman, L.A., Manevitch, L.I., Gendelman, O.V.: Isolated resonance captures and resonance capture cascades leading to single- or multi-mode passive energy pumping in damped coupled oscillators. J. Vib. Acoust. 126, 235–244 (2004)

    Article  Google Scholar 

  21. Starosvetsky, Y., Gendelman, O.: Interaction of nonlinear energy sink with a two degrees of freedom linear system: internal resonance. J. Sound Vib. 329, 1836–1852 (2010)

    Article  Google Scholar 

  22. Gendelman, O.V., Manevitch, L.I.: Reflection of short rectangular pulses in the ideal string attached to strongly nonlinear oscillator. Chaos Solitons Fractals 11, 2473–2477 (2000)

    Article  MATH  Google Scholar 

  23. Vakakis, A.F., Manevitch, L.I., Musienko, A.I., Kerschen, G., Bergman, L.A.: Transient dynamics of a dispersive elastic wave guide weakly coupled to an essentially nonlinear end attachment. Wave Motion 41, 109–132 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Manevitch, L.I., Gendelman, O.V., Musienko, A.I., Vakakis, A.F., Bergman, L.A.: Dynamic interaction of a semi-infinite linear chain of coupled oscillators with a strongly nonlinear end attachment. Phys. D 178, 1–18 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rothos, V.M., Vakakis, A.F.: Dynamic interactions of traveling waves propagating in a linear chain with a local essentially nonlinear attachment. Wave Motion 46, 174–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Vaurigaud, B., Ture Savadkoohi, A., Lamarque, C.H.: Targeted energy transfer with parallel nonlinear energy sinks. Part I: design theory and numerical results. Nonlinear Dyn. 66, 763–780 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Ture Savadkoohi, A., Vaurigaud, B., Lamarque, C.H., Pernot, S.: Targeted energy transfer with parallel nonlinear energy sinks, part II: theory and experiments. Nonlinear Dyn. 67, 37–46 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Panagopoulos, P.N., Vakakis, A.F., Tsakirtzis, S.: Transient resonant interactions of finite linear chains with essentially nonlinear end attachments leading to passive energy pumping. Int. J. Solids Struct. 41, 6505–6528 (2004)

    Article  MATH  Google Scholar 

  29. Tsakirtzis, S., Kerschen, G., Panagopoulos, P.N., Vakakis, A.F.: Multi-frequency nonlinear energy transfer from linear oscillators to MDOF essentially nonlinear attachments. J. Sound Vib. 285, 483–490 (2005)

    Article  Google Scholar 

  30. Tsakirtzis, S., Panagopoulos, P.N., Kerschen, G., Gendelman, O., Vakakis, A.F., Bergman, L.A.: Complex dynamics and targeted energy transfer in linear oscillators coupled to multi-degree-of-freedom essentially nonlinear attachments. Nonlinear Dyn. 48, 285–318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wierschem, N., Luo, J., Al-Shudeifat, M., Hubbard, S., Ott, R., Fahnestock, L., Quinn, D., McFarland, D., Spencer Jr., B., Vakakis, A., Bergman, L.: Experimental testing and numerical simulation of a six-story structure incorporating two-degree-of-freedom nonlinear energy sink. J. Struct. Eng. 140, 04014027 (2014)

    Article  Google Scholar 

  32. Starosvetsky, Y., Vakakis, A.F.: Primary wave transmission in systems of elastic rods with granular interfaces. Wave Motion 48, 568–585 (2011)

    Article  MATH  Google Scholar 

  33. Ture Savadkoohi, A., Lamarque, C.H., Weiss, M., Vaurigaud, B., Charlemagne, S.: Analysis of the 1:1 resonant energy exchanges between coupled oscillators with rheologies. Nonlinear Dyn. (2016). doi:10.1007/s11071-016-2792-3

    MathSciNet  Google Scholar 

  34. Nayfeh, A., Mook, D.: Nonlinear Oscillations. Wiley, Hoboken (1979)

    MATH  Google Scholar 

  35. Manevitch, L.I.: The description of localized normal modes in a chain of nonlinear coupled oscillators using complex variables. Nonlinear Dyn. 25, 95–109 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Starosvetsky, Y., Gendelman, O.V.: Strongly modulated response in forced 2DOF oscillatory system with essential mass and potential asymmetry. Phys. D 237, 1719–1733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rosenberg, R.M.: Normal modes of nonlinear dual-mode systems. J. Appl. Mech. 27, 263–268 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rosenberg, R.M.: The normal modes of nonlinear n-degree-of-freedom systems. J. Appl. Mech. 29, 7–14 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  39. Rosenberg, R.M.: On nonlinear vibrations of systems with many degrees of freedom. Adv. Appl. Mech. 9, 155–242 (1966)

    Article  Google Scholar 

  40. Cretegny, T., Dauxois, T., Ruffo, S., Torcini, A.: Localization and equipartition of energy in the \(\beta \)-FPU chain: Chaotic breathers. Phys. D 121, 109–126 (1998)

    Article  Google Scholar 

  41. Iooss, G., James, G.: Localized waves in nonlinear oscillator chains. Chaos 15, 015113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. James, G., Kevrekidis, P.G., Cuevas, J.: Breathers in oscillator chains with Hertzian interactions. Phys. D 251, 39–59 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Aubry, S.: Breathers in nonlinear lattices: existence, linear stability and quantization. Phys. D 103, 201–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  44. Starosvetsky, Y., Manevitch, L.I.: On intense energy exchange and localization in periodic FPU dimer chains. Phys. D 264, 66–79 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Perchikov, N., Gendelman, O.V.: Dynamics and stability of a discrete breather in a harmonically excited chain with vibro-impact on-site potential. Phys. D 292–293, 8–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Charlemagne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charlemagne, S., Lamarque, CH. & Ture Savadkoohi, A. Vibratory control of a linear system by addition of a chain of nonlinear oscillators. Acta Mech 228, 3111–3133 (2017). https://doi.org/10.1007/s00707-017-1867-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1867-7

Navigation