Skip to main content
Log in

Vibration of functionally graded CNTs-reinforced skewed cylindrical panels using a transformed differential quadrature method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

As a first endeavor, the free vibration behavior of functionally graded carbon nanotubes-reinforced composite (FG-CNTRC) skewed cylindrical panels, as a most general geometry of panels in practical applications, is investigated. The first-order shear deformation shell theory is used to model the kinematics of deformations, and Hamilton’s principle is applied to drive the differential governing equations and the related boundary conditions. An analytical transformation together with the differential quadrature method, namely transformed differential quadrature method, is employed to discretize the governing equations subjected to general boundary conditions. This method offers superior practicality and applicability in directly discretizing the governing differential equations for an arbitrary physical domain. The correctness of the computational method is investigated through several numerical examples that include FG-CNTRC skew plates, homogeneous skewed cylindrical panels and FG-CNTRC cylindrical panels. Eventually, the effects of geometrical shape parameters like thickness/radius-to-length and aspect ratios, different distributions and volume fractions of CNTs and boundary conditions on the non-dimensional frequency parameters of the FG-CNTRC skewed cylindrical panels are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ramaratnam, A.: Reinforcement of piezoelectric polymers with carbon nanotubes: pathway to next-generation sensors. J. Intell. Mater. Syst. Struct. 17, 199–208 (2006)

    Article  Google Scholar 

  2. Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)

    Article  Google Scholar 

  3. Viet, N.V., Wang, Q., Kuo, W.S.: A studying on load transfer in carbon nanotube/epoxy composites under tension. J. Model. Mech. Mater. (2017). doi:10.1515/jmmm-2016-0153

  4. Ruoff, R.S., Lorents, D.C.: Mechanical and thermal properties of carbon nanotubes. Carbon 33, 925–930 (1995)

    Article  Google Scholar 

  5. Lin, F., Xiang, Y.: Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl. Math. Model. 38, 3741–3754 (2014)

    Article  MathSciNet  Google Scholar 

  6. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R., Sadeghi, F.: Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams. Compos. Struct. 113, 316–327 (2014)

    Article  Google Scholar 

  7. Shen, H.-S.: Postbuckling of functionally graded fiber reinforced composite laminated cylindrical shells, part I: theory and solutions. Compos. Struct. 94, 1305–1321 (2012)

    Article  Google Scholar 

  8. Jam, J.E., Kiani, Y.: Low velocity impact response of functionally graded carbon nanotube reinforced composite beams in thermal environment. Compos. Struct. 132, 35–43 (2015)

    Article  Google Scholar 

  9. Ghorbani Shenas, A., Malekzadeh, P., Ziaee, S.: Vibration analysis of pre-twisted functionally graded carbon nanotube reinforced composite beams in thermal environment. Compos. Struct. 162, 325–340 (2017)

    Article  Google Scholar 

  10. Lei, Z.X., Zhang, L.W., Liew, K.M.: Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method. Compos. Part B Eng. 84, 211–221 (2016)

    Article  Google Scholar 

  11. Lei, Z.X., Zhang, L.W., Liew, K.M.: Free vibration analysis of laminated FG–CNT reinforced composite rectangular plates using the kp-Ritz method. Compos. Struct. 127, 245–259 (2015)

    Article  Google Scholar 

  12. Zhang, L.W.: An element-free based IMLS-Ritz method for buckling analysis of nanocomposite plates of polygonal planform. Eng. Anal. Bound. Elem. 77, 10–25 (2017)

    Article  MathSciNet  Google Scholar 

  13. Setoodeh, A.R., Shojaee, M.: Critical buckling load optimization of functionally graded carbon nanotube-reinforced laminated composite quadrilateral plates. Polym. Compos. (2017). doi:10.1002/pc.24289

  14. Zhang, L.W., Liew, K.M.: Element-free geometrically nonlinear analysis of quadrilateral functionally graded material plates with internal column supports. Compos. Struct. 147, 99–110 (2016)

    Article  Google Scholar 

  15. Zhang, L.W., Liew, K.M.: Postbuckling analysis of axially compressed CNT reinforced functionally graded composite plates resting on Pasternak foundations using an element-free approach. Compos. Struct. 138, 40–51 (2016)

    Article  Google Scholar 

  16. Zhang, L.W., Liew, K.M.: Geometrically nonlinear large deformation analysis of functionally graded carbon nanotube reinforced composite straight-sided quadrilateral plates. Comput. Methods Appl. Mech. Eng. 295, 219–239 (2015)

    Article  MathSciNet  Google Scholar 

  17. Zhang, L.W., Liew, K.M., Jiang, Z.: An element-free analysis of CNT-reinforced composite plates with column supports and elastically restrained edges under large deformation. Compos. Part B Eng. 95, 18–28 (2016)

    Article  Google Scholar 

  18. Zhang, L.W.: Geometrically nonlinear large deformation of CNT-reinforced composite plates with internal column supports. J. Model. Mech. Mater. (2017). doi:10.1515/jmmm-2016-0154

  19. Zhang, L.W., Liew, K.M., Reddy, J.N.: Postbuckling behavior of bi-axially compressed arbitrarily straight-sided quadrilateral functionally graded material plates. Comput. Methods Appl. Mech. Eng. 300, 593–610 (2016)

    Article  MathSciNet  Google Scholar 

  20. Zhang, L.W., Liew, K.M., Reddy, J.N.: Postbuckling analysis of bi-axially compressed laminated nanocomposite plates using the first-order shear deformation theory. Compos. Struct. 152, 418–431 (2016)

    Article  Google Scholar 

  21. Zhang, L.W., Liew, K.M., Reddy, J.N.: Postbuckling of carbon nanotube reinforced functionally graded plates with edges elastically restrained against translation and rotation under axial compression. Comput. Methods Appl. Mech. Eng. 298, 1–28 (2016)

    Article  MathSciNet  Google Scholar 

  22. Lei, Z.X., Zhang, L.W., Liew, K.M.: Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates. Int. J. Mech. Sci. 99, 208–217 (2015)

    Article  Google Scholar 

  23. Zhang, L.W., Song, Z.G., Liew, K.M.: Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches. Compos. Part B Eng. 85, 140–149 (2016)

    Article  Google Scholar 

  24. Zhang, L.W., Song, Z.G., Liew, K.M.: Nonlinear bending analysis of FG–CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method. Compos. Struct. 128, 165–175 (2015)

    Article  Google Scholar 

  25. Zhang, L.W., Song, Z.G., Liew, K.M.: State-space Levy method for vibration analysis of FG–CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory. Compos. Struct. 134, 989–1003 (2015)

    Article  Google Scholar 

  26. Malekzadeh, P., Shojaee, M.: Buckling analysis of quadrilateral laminated plates with carbon nanotubes reinforced composite layers. Thin Walled Struct. 71, 108–118 (2013)

    Article  Google Scholar 

  27. Zhang, L.W., Xiao, L.N., Zou, G.L., Liew, K.M.: Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method. Compos. Struct. 148, 144–154 (2016)

    Article  Google Scholar 

  28. Zhang, L.W., Zhang, Y., Zou, G.L., Liew, K.M.: Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method. Compos. Struct. 149, 247–260 (2016)

    Article  Google Scholar 

  29. Zhang, L.W., Zhu, P., Liew, K.M.: Thermal buckling of functionally graded plates using a local Kriging meshless method. Compos. Struct. 108, 472–492 (2014)

    Article  Google Scholar 

  30. Zhu, P., Zhang, L.W., Liew, K.M.: Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov–Galerkin approach with moving Kriging interpolation. Compos. Struct. 107, 298–314 (2014)

    Article  Google Scholar 

  31. Fantuzzi, N., Tornabene, F., Bacciocchi, M., Dimitri, R.: Free vibration analysis of arbitrarily shaped functionally graded carbon nanotube-reinforced plates. Compos. Part B Eng. (2016). doi:10.1016/j.compositesb.2016.09.021

  32. Shen, H.-S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Article  Google Scholar 

  33. Lei, Z.X., Liew, K.M., Yu, J.L.: Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. Compos. Struct. 106, 128–138 (2013)

    Article  MATH  Google Scholar 

  34. Abdollahzadeh Shahrbabaki, E., Alibeigloo, A.: Three-dimensional free vibration of carbon nanotube-reinforced composite plates with various boundary conditions using Ritz method. Compos. Struct. 111, 362–370 (2014)

    Article  Google Scholar 

  35. Malekzadeh, P., Zarei, A.R.: Free vibration of quadrilateral laminated plates with carbon nanotube reinforced composite layers. Thin Walled Struct. 82, 221–232 (2014)

    Article  Google Scholar 

  36. Malekzadeh, P., Heydarpour, Y.: Mixed Navier-layerwise differential quadrature three-dimensional static and free vibration analysis of functionally graded carbon nanotube reinforced composite laminated plates. Meccanica 50, 143–167 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wattanasakulpong, N., Chaikittiratana, A.: Exact solutions for static and dynamic analyses of carbon nanotube-reinforced composite plates with Pasternak elastic foundation. Appl. Math. Model. 39, 5459–5472 (2015)

    Article  MathSciNet  Google Scholar 

  38. Malekzadeh, P., Dehbozorgi, M., Monajjemzadeh, S.M.: Vibration of functionally graded carbon nanotube-reinforced composite plates under a moving load. Sci. Eng. Compos. Mater. 22 (2015). doi:10.1515/secm-2013-0142

  39. Zhang, L.W., Cui, W.C., Liew, K.M.: Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges. Int. J. Mech. Sci. 103, 9–21 (2015)

    Article  Google Scholar 

  40. Zhang, L.W., Lei, Z.X., Liew, K.M.: Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method. Appl. Math. Comput. 256, 488–504 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Wu, C.-P., Li, H.-Y.: Three-dimensional free vibration analysis of functionally graded carbon nanotube-reinforced composite plates with various boundary conditions. J. Vib. Control 22, 89–107 (2016)

    Article  MathSciNet  Google Scholar 

  42. Kiani, Y.: Free vibration of FG–CNT reinforced composite skew plates. Aerosp. Sci. Technol. 58, 178–188 (2016)

    Article  Google Scholar 

  43. Malekzadeh, P., Dehbozorgi, M.: Low velocity impact analysis of functionally graded carbon nanotubes reinforced composite skew plates. Compos. Struct. 140, 728–748 (2016)

    Article  Google Scholar 

  44. García-Macías, E., Castro-Triguero, R., Saavedra Flores, E.I., Friswell, M.I., Gallego, R.: Static and free vibration analysis of functionally graded carbon nanotube reinforced skew plates. Compos. Struct. 140, 473–490 (2016)

    Article  Google Scholar 

  45. Ansari, R., Shahabodini, A., Faghih Shojaei, M.: Vibrational analysis of carbon nanotube-reinforced composite quadrilateral plates subjected to thermal environments using a weak formulation of elasticity. Compos. Struct. 139, 167–187 (2016)

    Article  Google Scholar 

  46. Setoodeh, A.R., Shojaee, M.: Application of TW–DQ method to nonlinear free vibration analysis of FG carbon nanotube-reinforced composite quadrilateral plates. Thin Walled Struct. 108, 1–11 (2016)

    Article  Google Scholar 

  47. Zhang, L.W., Lei, Z.X., Liew, K.M.: Buckling analysis of FG–CNT reinforced composite thick skew plates using an element-free approach. Compos. Part B Eng. 75, 36–46 (2015)

    Article  Google Scholar 

  48. Zhang, L.W.: On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates. Compos. Struct. 160, 824–837 (2017)

    Article  Google Scholar 

  49. Zhang, L.W., Liu, W.H., Liew, K.M.: Geometrically nonlinear large deformation analysis of triangular CNT-reinforced composite plates. Int. J. Nonlinear Mech. 86, 122–132 (2016)

    Article  Google Scholar 

  50. Zhang, L.W., Liew, K.M.: Large deflection analysis of FG–CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach. Compos. Struct. 132, 974–983 (2015)

    Article  Google Scholar 

  51. Lei, Z.X., Zhang, L.W., Liew, K.M., Yu, J.L.: Dynamic stability analysis of carbon nanotube-reinforced functionally graded cylindrical panels using the element-free kp-Ritz method. Compos. Struct. 113, 328–338 (2014)

    Article  Google Scholar 

  52. Zhang, L.W., Song, Z.G., Liew, K.M.: Computation of aerothermoelastic properties and active flutter control of CNT reinforced functionally graded composite panels in supersonic airflow. Comput. Methods Appl. Mech. Eng. 300, 427–441 (2016)

    Article  MathSciNet  Google Scholar 

  53. Zhang, L.W., Song, Z.G., Qiao, P., Liew, K.M.: Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads. Comput. Methods Appl. Mech. Eng. 313, 889–903 (2017)

    Article  MathSciNet  Google Scholar 

  54. Heydarpour, Y., Aghdam, M.M., Malekzadeh, P.: Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells. Compos. Struct. 117, 187–200 (2014)

    Article  MATH  Google Scholar 

  55. Ansari, R., Torabi, J.: Numerical study on the buckling and vibration of functionally graded carbon nanotube-reinforced composite conical shells under axial loading. Compos. Part B Eng. 95, 196–208 (2016)

    Article  Google Scholar 

  56. Song, Z.G., Zhang, L.W., Liew, K.M.: Vibration analysis of CNT-reinforced functionally graded composite cylindrical shells in thermal environments. Int. J. Mech. Sci. 115–116, 339–347 (2016)

    Article  Google Scholar 

  57. Ansari, R., Torabi, J., Shojaei, M.F.: Vibrational analysis of functionally graded carbon nanotube-reinforced composite spherical shells resting on elastic foundation using the variational differential quadrature method. Eur. J. Mech. A Solids 60, 166–182 (2016)

    Article  MathSciNet  Google Scholar 

  58. Kamarian, S., Salim, M., Dimitri, R., Tornabene, F.: Free vibration analysis of conical shells reinforced with agglomerated carbon nanotubes. Int. J. Mech. Sci. 108–109, 157–165 (2016)

    Article  Google Scholar 

  59. Sobhani Aragh, B., Nasrollah Barati, A.H., Hedayati, H.: Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Compos. Part B Eng. 43, 1943–1954 (2012)

    Article  Google Scholar 

  60. Shen, H.-S., Xiang, Y.: Nonlinear vibration of nanotube-reinforced composite cylindrical shells in thermal environments. Comput. Methods Appl. Mech. Eng. 213–216, 196–205 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  61. Yas, M.H., Pourasghar, A., Kamarian, S., Heshmati, M.: Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube. Mater. Des. 49, 583–590 (2013)

    Article  Google Scholar 

  62. Pourasghar, A., Kamarian, S.: Three-dimensional solution for the vibration analysis of functionally graded multiwalled carbon nanotubes/phenolic nanocomposite cylindrical panels on elastic foundation. Polym. Compos. 34, 2040–2048 (2013)

    Article  Google Scholar 

  63. Shen, H.-S., Xiang, Y.: Nonlinear vibration of nanotube-reinforced composite cylindrical panels resting on elastic foundations in thermal environments. Compos. Struct. 111, 291–300 (2014)

    Article  Google Scholar 

  64. Zhang, L.W., Lei, Z.X., Liew, K.M., Yu, J.L.: Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Compos. Struct. 111, 205–212 (2014)

    Article  Google Scholar 

  65. Lei, Z.X., Zhang, L.W., Liew, K.M.: Vibration analysis of CNT-reinforced functionally graded rotating cylindrical panels using the element-free kp-Ritz method. Compos. Part B Eng. 77, 291–303 (2015)

    Article  Google Scholar 

  66. Lei, Z.X., Zhang, L.W., Liew, K.M.: Parametric analysis of frequency of rotating laminated CNT reinforced functionally graded cylindrical panels. Compos. Part B Eng. 90, 251–266 (2016)

    Article  Google Scholar 

  67. Mirzaei, M., Kiani, Y.: Free vibration of functionally graded carbon nanotube reinforced composite cylindrical panels. Compos. Struct. 142, 45–56 (2016)

    Article  Google Scholar 

  68. Jooybar, N., Malekzadeh, P., Fiouz, A.R.: Vibration of functionally graded carbon nanotubes reinforced composite truncated conical panels with elastically restrained against rotation edges in thermal environment. Compos. Part B Eng. 106, 242–261 (2016)

    Article  Google Scholar 

  69. Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E.: Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Compos. Part B Eng. 89, 187–218 (2016)

    Article  Google Scholar 

  70. Thomas, B., Roy, T.: Vibration analysis of functionally graded carbon nanotube-reinforced composite shell structures. Acta Mech. 227, 581–599 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  71. Pouresmaeeli, S., Fazelzadeh, S.A.: Frequency analysis of doubly curved functionally graded carbon nanotube-reinforced composite panels. Acta Mech. (2016). doi:10.1007/s00707-016-1647-9

  72. Tornabene, F., Fantuzzi, N., Bacciocchi, M.: Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes. Compos. Part B Eng. (2016). doi:10.1016/j.compositesb.2016.07.011

  73. Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. CRC Press, Hoboken (2006)

    Google Scholar 

  74. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  75. Berthelot, J.-M.: Composite Materials: Mechanical Behavior and Structural Analysis. Springer, New York (1999)

    Book  Google Scholar 

  76. Zhang, L.W., Huang, D., Liew, K.M.: An element-free IMLS-Ritz method for numerical solution of three-dimensional wave equations. Comput. Methods Appl. Mech. Eng. 297, 116–139 (2015)

    Article  MathSciNet  Google Scholar 

  77. Zhang, L.W., Li, D.M., Liew, K.M.: An element-free computational framework for elastodynamic problems based on the IMLS-Ritz method. Eng. Anal. Bound. Elem. 54, 39–46 (2015)

    Article  MathSciNet  Google Scholar 

  78. Tornabene, F., Fantuzzi, N., Bacciocchi, M.: The strong formulation finite element method: stability and accuracy. Fract. Struct. Integr. 29, 251–265 (2014)

    Google Scholar 

  79. Tornabene, F., Fantuzzi, N., Ubertini, F., Viola, E.: Strong formulation finite element method based on differential quadrature: a survey. Appl. Mech. Rev. 67, 020801–020856 (2015)

    Article  Google Scholar 

  80. Malekzadeh, P., Shojaee, M.: A two-variable first-order shear deformation theory coupled with surface and nonlocal effects for free vibration of nanoplates. J. Vib. Control 21, 2755–2772 (2015)

    Article  MathSciNet  Google Scholar 

  81. Malekzadeh, P., Shojaee, M.: Free vibration of nanoplates based on a nonlocal two-variable refined plate theory. Compos. Struct. 95, 443–452 (2013)

    Article  Google Scholar 

  82. Malekzadeh, P., Golbahar Haghighi, M.R., Shojaee, M.: Nonlinear free vibration of skew nanoplates with surface and small scale effects. Thin Walled Struct. 78, 48–56 (2014)

    Article  Google Scholar 

  83. Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39, 315–323 (2007)

    Article  Google Scholar 

  84. Kandasamy, S., Singh, A.V.: Free vibration analysis of skewed open circular cylindrical shells. J. Sound Vib. 290, 1100–1118 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Setoodeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaee, M., Setoodeh, A.R. & Malekzadeh, P. Vibration of functionally graded CNTs-reinforced skewed cylindrical panels using a transformed differential quadrature method. Acta Mech 228, 2691–2711 (2017). https://doi.org/10.1007/s00707-017-1846-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-1846-z

Navigation