Skip to main content

Advertisement

Log in

Principle of virtual power applied to deformable semiconductors with strain, polarization, and magnetization gradients

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The aim of this article is to generalize previous works in order to provide a systematic method to derive the equilibrium equations and the constitutive ones for deformable semiconductors accounting for first-order strain, polarization, and magnetization gradients. This is done by use of the “principle of virtual power” subject to the objectivity requirement (i.e., translational and rotational invariances) to which we add the first and the second laws of thermodynamics associated with the conservation of energy and the entropy production. This leads to a generalized expression of the Clausius–Duhem inequality, from which constitutive equations are derived. The interactions of the electromagnetic fields with the deformable and the semiconducting continua appear naturally by generalized non-symmetric stress tensors and the body and surface forces of electromagnetic origin. A comparison with some previous works is made putting emphasis on flexoelectricity that will be dealt with in a future work. Finally, special attention is given to particular cases relative to dissipative phenomena associated with semiconducting properties. In order to be close to what is nowadays done by physicists, the SI units have replaced the Lorentz–Heaviside units often used in previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mindlin, R.D.: Polarization gradient in elastic dielectrics. Int. J. Solids Struct. 4, 637–642 (1968)

    Article  MATH  Google Scholar 

  2. Tagantsev, A.K.: Theory of flexoelectric effect in crystals. Zhurnal Eksp. Teor. Fiz. 88, 2108–2122 (1985)

    Google Scholar 

  3. Tagantsev, A.K.: Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B. 34, 5883–5889 (1986)

    Article  Google Scholar 

  4. Tolpygo, K.B.: Physical properties of the salt lattice constructed from deforming ions. J Exp Theor PhysUSSR. 20, 497 (1950)

    Google Scholar 

  5. Tolpygo, K.B.: Physical properties of a rock salt lattice made up of deformable ions. Ukr. J. Phys. 53, 93–102 (2008)

    Google Scholar 

  6. Kogan, S.M.: Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys.-Solid State 5, 2069–2070 (1964)

    Google Scholar 

  7. Meyer, R.B.: Piezoelectric Effects in Liquid Crystals. Phys. Rev. Lett. 22, 918–921 (1969)

    Article  Google Scholar 

  8. Zubko, P., Catalan, G., Tagantsev, A.K.: Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013)

    Article  Google Scholar 

  9. Yudin, P.V., Tagantsev, A.K.: Fundamentals of flexoelectricity in solids. Nanotechnology. 24, 432001 (2013)

    Article  Google Scholar 

  10. Germain, P.: La méthode des puissances virtuelles en mécanique des milieux continus. Première partie: Théorie du second gradient. J Mécanique 12, 236–274 (1973)

    MATH  Google Scholar 

  11. Germain, P.: The Method of Virtual Power in Continuum Mechanics. Part 2: Microstructure. SIAM J. Appl. Math. 25, 556–575 (1973)

    Article  MATH  Google Scholar 

  12. Collet, B., Maugin, G.A.: Sur l’électrodynamique des milieux continus avec interactions. C.R.A.S. (Compte Rendu à l’Académie des Sciences, Paris) t 279, 379–382 (1974)

    Google Scholar 

  13. Collet, B., Maugin, G.A.: Thermodynamique des milieux continus électromagnétiques avec interactions. C.R.A.S. (Compte Rendu à l’Académie des Sciences, Paris) t 279, 439–442 (1974)

    Google Scholar 

  14. Collet, B.: Sur une théorie des premier et second gradients des milieux continus électromagnétiques. PhD thesis. Univ. P. & M. Curie, Paris (1976)

  15. Maugin, G.A.: A continuum theory of deformable ferromagnetic bodies. I. Field equations. J. Math. Phys. 17, 1727–1738 (1976)

    Article  MATH  Google Scholar 

  16. Collet, B.: Higher order surface couplings in elastic ferromagnets. Int. J. Eng. Sci. 16, 349–364 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maugin, G.: The method of virtual power in continuum mechanics: application to coupled fields. Acta Mech. 35, 1–70 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maugin, G.A., Pouget, J.: Electroacoustic equations for one-domain ferroelectric bodies. J. Acoust. Soc. Am. 68, 575–587 (1980)

    Article  MATH  Google Scholar 

  19. Daher, N., Maugin, G.A.: Virtual power and thermodynamics for electromagnetic continua with interfaces. J. Math. Phys. 27, 3022–3035 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. Daher, N., Maugin, G.A.: Deformable semiconductors with interfaces: Basic continuum equations. Int. J. Eng. Sci. 25, 1093–1129 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Maugin, G.A.: Continuum mechanics of electromagnetic solids. North-Holland, (1988)

  22. Maugin, G.A.: The principle of virtual power: from eliminating metaphysical forces to providing an efficient modelling tool. Contin. Mech. Thermodyn. 25, 127–146 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fousek, J., Cross, L.E., Litvin, D.B.: Possible piezoelectric composites based on the flexoelectric effect. Mater. Lett. 39, 287–291 (1999)

    Article  Google Scholar 

  24. Cross, L.E.: Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006)

    Article  Google Scholar 

  25. Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B. 77, 125424 (2008)

    Article  Google Scholar 

  26. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua I: Foundations and Solid Media. (1990)

  27. Maugin, G.A., Eringen, A.C.: On the equations of the electrodynamics of deformable bodies of finite extent. J. Mécanique. 16, 101–147 (1977)

    MathSciNet  MATH  Google Scholar 

  28. Eringen, A.C.: Mechanics of Continua. Krieger Pub Co, Huntington, N.Y. (1980)

    MATH  Google Scholar 

  29. Kiréev, P.S., Medvedev, S.: La physique des semiconducteurs. (1975)

  30. Wang, Z., Devel, M., Langlet, R., Dulmet, B.: Electrostatic deflections of cantilevered semiconducting single-walled carbon nanotubes. Phys. Rev. B. 75, 205414 (2007)

    Article  Google Scholar 

  31. Wang, Z., Devel, M.: Electrostatic deflections of cantilevered metallic carbon nanotubes via charge-dipole model. Phys. Rev. B Condens. Matter Mater. Phys. 76, 195434 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Hirsinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lecoutre, G., Daher, N., Devel, M. et al. Principle of virtual power applied to deformable semiconductors with strain, polarization, and magnetization gradients. Acta Mech 228, 1681–1710 (2017). https://doi.org/10.1007/s00707-016-1787-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1787-y

Navigation