Skip to main content
Log in

Thermo-elasticity in shell structures made of functionally graded materials

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An efficient low-order finite shell element is derived for the thermo-elastic analysis of shell structures made of functionally graded materials or multilayer composites. It is based on a one-way coupling between the thermal and the mechanical analysis. The thermal quantities are evaluated using a new iterative scheme that properly accounts for convection boundary conditions and large gradients of the thermal conductivity. The resulting non-constant temperature field with respect to the thickness direction gives nodal forces and couples, which are applied on a shear weak six-parameter shell formulation. Here, drill rotations are included, supplemented with a proper method for calculating effective elastic properties. Numerical results indicate the efficiency and accuracy of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbasnejad B., Rezazadeh G.: Mechanical behavior of a FGM micro-beam subjected to a nonlinear electrostatic pressure. Int. J. Mater. Des. 8, 381–392 (2012)

    Google Scholar 

  2. Sankar B.: An elasticity solution for functionally graded beams. Compos. Sci. Technol. 61, 689–696 (2001)

    Article  Google Scholar 

  3. Chakraborty S., Gopalakrishnan S., Reddy J.: A new beam finite element for the analysis of functionally graded materials. Int. J. Mech. Sci. 45, 519–539 (2003)

    Article  MATH  Google Scholar 

  4. Mahi A., Bedia E.A., Tounsi A., Mechab I.: An analytical method for temperature-dependent free vibration analysis of functionally graded beams with general boundary condition. Compos. Struct. 92, 1877–1887 (2010)

    Article  Google Scholar 

  5. Murin, J., Kutis, V.: Improved mixture rules for the composite (FGM s) sandwich beam finite element. In: Proceedings IX International Conference on Computational Plasticity (COMPLAS IX), Barcelona

  6. Murin J., Kutis V.: An effective multilayered sandwich beam-link finite element for solution of the electro-thermo-structural problems. Comput. Struct. 87, 1496–1507 (2009)

    Article  Google Scholar 

  7. Murin J., Aminbaghai M., Kutis V.: Exact solution of the bending vibration problem of FGM beams with variation of material properties. Eng. Struct. 32, 1631–1640 (2010)

    Article  Google Scholar 

  8. Shen, S.: Functionally graded materials. Nonlinear analysis of shear deformable FGM plates and shells. CRC Press, Taylor and Francis Group, Boca Raton, London, New York (2009)

  9. Liew K., He X., Kitipornchai S.: Finite element method for feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators. Comput. Methods Appl. Mech. Eng. 193, 257–273 (2004)

    Article  MATH  Google Scholar 

  10. Alibeigloo A.: Static analysis of a functionally graded cylindrical shell with piezoelectric layers as sensor and actuator. Smart Mater. Struct. 18, 12 (2009)

    Article  Google Scholar 

  11. Naghdabadi R., Kordkheili S.H.: A finite element formulation for analysis of functionally graded plates and shells. Arch. Appl. Mech. 74, 375–386 (2005)

    Article  MATH  Google Scholar 

  12. Kugler, S.: Development of a laterally pressed quadrilateral shell element, Ph.D. thesis, STU Bratislava (2010)

  13. Kugler S., Fotiu P., Murin J.: A highly efficient membrane finite element with drilling degrees of freedom. Acta Mech. 213, 323–348 (2010)

    Article  MATH  Google Scholar 

  14. Hughes T.J., Brezzi F.: On drilling degrees of freedom. Comput. Methods Appl. Mech. Eng. 72, 105–121 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kugler S., Fotiu P., Murin J.: The numerical analysis of FGM shells with enhanced finite elements. Eng. Struct. 49, 920–935 (2013)

    Article  Google Scholar 

  16. Kugler, S., Fotiu, P., Murin, J.: Enhanced functionally graded material shell finite elements. ZAMM 94, 72–84 (2014)

  17. Zienkiewicz, O.C., Taylor, R.L.: Finite ElementMethod: Volume 2, Solid Mechanics (Finite ElementMethod). Butterworth-Heinemann, Oxford, Auckland, Boston, Johannesburg, Melbourne, New Delhi (2000)

  18. Belytschko, T., Liu, W., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley, West Sussex, England (2000)

  19. Mills, A.: Basic Heat and Mass Transfer. Prentice Hall, Upper Saddle River, NJ (1999)

  20. Zienkiewicz, O.C., Taylor, R.L.: Finite Element Method: Volume 1, The Basis (Finite Element Method). Butterworth-Heinemann, Oxford, Auckland, Boston, Johannesburg, Melbourne, New Delhi (2000)

  21. Belytschko T., Leviathan I.: Projection schemes for one-point quadrature shell elements. Comput. Methods Appl. Mech. Eng. 115, 277–286 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Belytschko T., Leviathan I.: Physical stabilization of the 4-node shell element with one point quadrature. Comput. Methods Appl. Mech. Eng. 113, 321–350 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rankin C., Nour-Omid B.: The use of projectors to improve finite element performance. Comput. Struct. 30, 257–267 (1988)

    Article  MATH  Google Scholar 

  24. Kugler, S., Fotiu, P., Murin, J.: Advances in quadrilateral shell elements with drilling degrees of freedom. In: Altenbach, H., Eremeyev, V. (eds.) Shell-Like Structures—Advanced Structured Materials, vol. 15, pp. 307–328. Springer, Berlin, Heidelberg (2011)

  25. Bathe K., Dvorkin E.: A formulation of general shell elements—the use of mixed interpolation of tensorial components. Int. J. Numer. Methods Eng. 22, 697–722 (1986)

    Article  MATH  Google Scholar 

  26. Dvorkin E., Bathe K.: A continuum mechanics based four-node shell element for general non-linear analysis. Eng. Comput. 1, 77–88 (1984)

    Article  Google Scholar 

  27. ANSYS, Ansys V11 Documentation

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Kugler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kugler, S., Fotiu, P.A. & Murin, J. Thermo-elasticity in shell structures made of functionally graded materials. Acta Mech 227, 1307–1329 (2016). https://doi.org/10.1007/s00707-015-1550-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1550-9

Keywords

Navigation