Skip to main content
Log in

A micromechanical study on the electro-elastic behavior of piezoelectric fiber-reinforced composites using the element-free Galerkin method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A two-dimensional generalized plane strain micromechanical model is developed to study the electro-elastic behavior of piezoelectric fiber-reinforced composite (PFRC) systems. The composite system consists of long parallel piezoelectric fibers with orthotropic and/or transversely isotropic properties and perfectly bounded to the isotropic matrix in a square array arrangement. In addition, the constituents are assumed to have both linear elastic and electrical behavior, whereas the matrix is piezoelectrically passive. The element-free Galerkin (EFG) method is employed to obtain the solution for the governing system of partial differential equations. The performance of the model is examined for both axial and transverse polarizations and various fiber cross sections. Comparison of the presented results with other techniques available in the literature reveals good agreement. It is demonstrated that the piezoelectric coefficient e 31 in the transverse polarization is considerably improved in comparison with the corresponding coefficient for pure piezoelectric material. Furthermore, results also show that elliptical fibers may enhance the electrical sensitivity of PFRCs for a specific direction, which is related to the elliptical fiber orientation, in both polarization directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Safari A.: Development of piezoelectric composites for transducers. J. Phys. III 4, 1129–1149 (1994)

    Google Scholar 

  2. Jayendiran R., Arockiarajan A.: Non-linear electromechanical response of 1–3 type piezocomposites. Int. J. Solids Struct. 50, 2259–2270 (2013)

    Article  Google Scholar 

  3. Li L., Zhang S., Xu Z., Wen F., Geng X., Lee H.J., Shrout T.R.: 1–3 piezoelectric composites for high-temperature transducer applications. J. Phys. D: Appl. Phys. 46, 165306 (2013)

    Article  Google Scholar 

  4. Bravo-Castillero J., Guinovart-Dıaz R., Sabina F.J., Rodrıguez-Ramos R.: Closed-form expressions for the effective coefficients of a fiber-reinforced composite with transversely isotropic constituents–II. piezoelectric and square symmetry. Mech. Mater. 33, 237–248 (2001)

    Article  Google Scholar 

  5. Tan P., Tong L.: Modeling for the electro-magneto-thermo-elastic properties of piezoelectric-magnetic fiber reinforced composites. Compos. A: Appl. Sci. Manuf. 33, 631–645 (2002)

    Article  Google Scholar 

  6. Mallik N., Ray M.C.: Effective coefficients of piezoelectric fiber-reinforced composites. AIAA J. 41, 704–710 (2003)

    Article  Google Scholar 

  7. Odegard G.M.: Constitutive modeling of piezoelectric polymer composites. Acta Mater. 52, 5315–5330 (2004)

    Article  Google Scholar 

  8. Berger H., Kari S., Gabbert U., Rodriguez-Ramos R., Guinovart R., Otero J.A., Bravo-Castillero J.: An analytical and numerical approach for calculating effective material coefficients of piezoelectric fiber composites. Int. J. Solids Struct. 42, 5692–5714 (2005)

    Article  Google Scholar 

  9. Ray M.C.: Micromechanics of piezoelectric composites with improved effective piezoelectric constant. Int. J. Mech. Mater. Des. 3, 361–371 (2006)

    Article  Google Scholar 

  10. Della C.N., Shu D.: On the performance of 1–3 piezoelectric composites with a passive and active matrix. Sens. Actuators A: Phys. 140, 200–206 (2007)

    Article  Google Scholar 

  11. Kar-Gupta R., Venkatesh T.A.: Electromechanical response of 1–3 piezoelectric composites: an analytical model. Acta Mater. 55, 1093–1108 (2007)

    Article  Google Scholar 

  12. Kumar A., Chakraborty D.: Effective properties of thermo-electro-mechanically coupled piezoelectric fiber reinforced composites. Mater. Des. 30, 1216–1222 (2009)

    Article  Google Scholar 

  13. Sakthivel M., Arockiarajan A.: An analytical model for predicting thermo-electro-mechanical response of 1–3 piezoelectric composites. Comput. Mater. Sci. 48, 759–767 (2010)

    Article  Google Scholar 

  14. Guinovart-Díaz R., Yan P., Rodríguez-Ramos R., López-Realpozo J.C., Jiang C.P., Bravo-Castillero J., Sabina F.J.: Effective properties of piezoelectric composites with parallelogram periodic cells. Int. J. Eng. Sci. 53, 58–66 (2012)

    Article  Google Scholar 

  15. López-López E., Sabina F.J., Guinovart-Díaz R., Bravo-Castillero J., Rodríguez-Ramos R.: Effective permittivity of a fiber-reinforced composite with transversely isotropic constituents. J. Electrost. 71, 791–800 (2013)

    Article  Google Scholar 

  16. Lin C.-H., Muliana A.: Micromechanics models for the effective nonlinear electro-mechanical responses of piezoelectric composites. Acta Mech. 224, 1471–1492 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kar-Gupta R., Venkatesh T.A.: Electromechanical response of 1–3 piezoelectric composites: effect of poling characteristics. J. Appl. Phys. 98, 054102 (2005)

    Article  Google Scholar 

  18. Kar-Gupta R., Marcheselli C., Venkatesh T.A.: Electromechanical response of 1–3 piezoelectric composites: effect of fiber shape. J. Appl. Phys. 104, 024105 (2008)

    Article  Google Scholar 

  19. Dai Q., Ng K.: Investigation of electromechanical properties of piezoelectric structural fiber composites with micromechanics analysis and finite element modeling. Mech. Mater. 53, 29–46 (2012)

    Article  Google Scholar 

  20. Brockmann T.H.: Theory of Adaptive Fiber Composites: From Piezoelectric Material Behavior to Dynamics of Rotating Structures, vol. 161. Springer, Heidelberg (2009)

    Book  Google Scholar 

  21. Most T., Bucher C.: New concepts for moving least squares: an interpolating non-singular weighting function and weighted nodal least squares. Eng. Anal. Bound. Elem. 32, 461–470 (2008)

    Article  Google Scholar 

  22. Liu G.-R., Gu Y.-T.: An Introduction to Meshfree Methods and Their Programming. Springer, Heidelberg (2005)

    Google Scholar 

  23. Dang T.D., Sankar B.V.: Meshless local Petrov–Galerkin formulation for problems in composite micromechanics. AIAA J. 45, 912–921 (2007)

    Article  Google Scholar 

  24. Ahmadi I., Aghdam M.M.: Micromechanics of fibrous composites subjected to combined shear and thermal loading using a truly meshless method. Comput. Mech. 46, 387–398 (2010)

    Article  MathSciNet  Google Scholar 

  25. Ahmadi I., Aghdam M.M.: A truly generalized plane strain meshless method for combined normal and shear loading of fibrous composites. Eng. Anal. Bound. Elem. 35, 395–403 (2011)

    Article  Google Scholar 

  26. Belytschko T., Lu Y.Y., Gu L.: Element-free Galerkin methods. Int. J. Numer. Methods Eng. 37, 229–256 (1994)

    Article  MathSciNet  Google Scholar 

  27. Dolbow J., Belytschko T.: An introduction to programming the meshless element free Galerkin method. Arch. Comput. Methods Eng. 5, 207–241 (1998)

    Article  MathSciNet  Google Scholar 

  28. Aghdam M.M., Pavier M.J., Smith D.J.: Micro-mechanics of off-axis loading of metal matrix composites using finite element analysis. Int. J. Solids Struct. 38, 3905–3925 (2001)

    Article  Google Scholar 

  29. Fernández-Méndez S., Huerta A.: Imposing essential boundary conditions in mesh-free methods. Comput. Methods Appl. Mech. Eng. 193, 1257–1275 (2004)

    Article  Google Scholar 

  30. Zhu T., Atluri S.N.: A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free galerkin method. Comput. Mech. 21, 211–222 (1998)

    Article  MathSciNet  Google Scholar 

  31. Tang T., Yu W.: Variational asymptotic micromechanics modeling of heterogeneous piezoelectric materials. Mech. Mater. 40, 812–824 (2008)

    Article  Google Scholar 

  32. Liu G.-R.: Meshfree Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2009)

    Book  Google Scholar 

  33. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing capabilities. In: Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, pp. 483–485. ACM (1967)

  34. Meitzler, A., Tiersten, H.F., Warner, A.W., Berlincourt, D., Couqin, G.A., Welsh III, F.S.: IEEE Standard on Piezoelectricity. ANSI/IEEE Std 176–1987 (1988). doi:10.1109/IEEESTD.1988.79638

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Aghdam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eynbeygi, M., Aghdam, M.M. A micromechanical study on the electro-elastic behavior of piezoelectric fiber-reinforced composites using the element-free Galerkin method. Acta Mech 226, 3177–3194 (2015). https://doi.org/10.1007/s00707-015-1371-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1371-x

Keywords

Navigation