Skip to main content
Log in

Principle of generalized velocities in dynamics of planar separation of a rigid body

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the dynamics of planar separation of a rigid body into two rigid bodies is investigated. Motion of the initial body is planar and its properties (position, velocity, angular velocity, and angular position) are exactly known before separation. The process of separation lasts for a short time during which it is assumed that the position and angle position of the bodies do not vary. After separation, the separated and the remainder body remain to move planar. Applying the principle of momentum and angular momentum, velocity and angular velocity of the separated and remainder body are calculated. In the paper, the analytical procedure for determining these values is developed. Introducing the virtual velocity and angular velocity, the modified D’Alembert–Lagrange equation for planar separation of a body is expressed. Virtual works of impulses caused by impact force and torque are defined and discussed. Using the generalized velocity and angular velocity and introducing the generalized impulse, modified Lagrange’s equations for planar separations are obtained. In this paper, an example of separation of a planar beam on which an impulse of impact force acts is analyzed. Applying the suggested equations, velocity and angular velocity of the remainder beam are determined and discussed. Conditions for transformation of the planar motion into pure translatory motion of the remainder beam are determined. The obtained values represent the initial conditions for long term motion of the remainder part of the beam. The analytical methods suggested in the paper have the potential to improve our knowledge in dynamics of the discontinual separation of a rigid body. The obtained results have practical significance, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kosmodemjanskih, A.A.: Lekcii po mehanike tel peremennoj masji. Uchenjie zapiski MGU 154 (1951)

  2. Oppalzer H.: Ueber eine Ursache, welche den Unterschied zwischen der theoretisch berechneten Secularacceleration in der Lange des Mondes und der tatsachlichen bedingungen kann. Astron. Nachr. 108(2573), 67–72 (1884)

    Article  Google Scholar 

  3. Dufour Ch.: Sur l’acceleration seculare du mouvement de la lune. Comptes rendus des seances de l’Ac. des Sc. LXII, 840–842 (1866)

    Google Scholar 

  4. Seeliger H.: Über Zusammenstösse und Teilungen planetarischer Massen. Abhandlungen der König. Bayerische Akademie der Wissenschaften XVII(II), 459–490 (1890)

    Google Scholar 

  5. Tisseran: Mecanique celeste. II, sec. XXIX, 482–489 (1892)

  6. Strutt, J.W.: Theory of Sound, I, art.88 (1877)

  7. Routh, E.: Dynamics of a system of rigid bodies. The Advanced Part 76 (1884)

  8. Pollard, J., Dudebout, A.: Theorie du navire. II. sec. XXIV, XXV, 79–103 (1891)

  9. Cayley A.: On a class of dynamical problems. Proc. R. Soc. Lond. 3, 506–511 (1857)

    Google Scholar 

  10. Cayley, A.: The collected mathematical papers. VIII, No. 531, 445–446 (1860)

  11. Meshchersky I.V.: Odin chastnij sluchaj Guldena. Astron. Nachr. 132(3153), 3159 (1893)

    Google Scholar 

  12. Gylden H.: Die Bahnbewegungen in einem Systeme von zwei Körpern in dem Falle, dass die Massen Veränderungen unterworfwn sind. Astron. Nachr. 109(2593), 1–6 (1884)

    Article  MATH  Google Scholar 

  13. Meshchersky I.V.: Dinamika tochki peremennoj massji. Magistarskaja disertacija. Peterburgski Universitet, Petersburg (1897)

    Google Scholar 

  14. Levi-Civita, T.: Sui moto di un corpo di massa variabile. Rendicondi dei Lincei, 329–333, 621–622 (1928)

  15. Cornelisse J.W., Schoyer H.F.R., Wakker K.F.: Rocket Propulsion and Spaceflight Dynamics. Pitman, London (1979)

    Google Scholar 

  16. Pesce C.P.: The application of Lagrange equations to mechanical systems with mass explicitly dependent on position. Trans. ASME J. Appl. Mech. 70(5), 751–756 (2003)

    Article  MATH  Google Scholar 

  17. Irschik H., Holl H.J.: Mechanics of variable-mass systems—Part 1: balance of mass and linear momentum. Appl. Mech. Rev. 57(2), 145–161 (2004)

    Article  Google Scholar 

  18. Irschik, M., Holl, H.J.: Lagrange’s equations for open systems, derived via the method of fictitious particles, and written in the Lagrange description of continuum mechanics. Acta Mech. (2014). doi:10.1007/s00707-014-1147-8, on-line

  19. Casetta L., Pesce C.P.: The generalized Hamilton’s principle for a non-material volume. Acta Mech. 224, 919–924 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  20. Bessonov A.P.: Osnovji dinamiki mehanizmov s peremennoj massoj zvenjev. Nauka, Moscow (1967)

    Google Scholar 

  21. Cveticanin L.: Dynamics of Machines with Variable Mass. Gordon and Breach Science Publishers, London (1998)

    MATH  Google Scholar 

  22. Pischanskyy O.V., van Horssen W.T.: On the nonlinear dynamics of a single degree of freedom oscillator with a time-varying mass. J. Sound Vib. 331, 1887–1897 (2012)

    Article  Google Scholar 

  23. Cveticanin L.: Oscillator with non-integer order nonlinearity and time variable parameters. Acta Mech. 223(7), 1417–1429 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  24. Abramian, A.K., van Horssen, W.T., Vakulenko, S.A.: On oscillations of a beam with a small rigidity and a time-varying mass. Nonlinear Dyn. (2014). doi:10.1007/s11071-014-1451-9, on-line

  25. Cveticanin L.: Van der Pol oscillator with time-variable parameters. Acta Mech. 224(5), 945–955 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  26. Cveticanin L.: The influence of the reactive force on a nonlinear oscillator with variable parameter. Trans. ASME J. Vib. Acoust. 114(4), 578–580 (1992)

    Article  Google Scholar 

  27. Cveticanin L., Kovacic I.: On the dynamics of bodies with continual mass variation. Trans. ASME J. Appl. Mech. 74, 810–815 (2007)

    Article  Google Scholar 

  28. Cveticanin, L.: Dynamics of the mass variable body. In: Irschik, H., Belyaev, A. (eds.) Dynamics of Mechanical Systems with Variable Mass, Series CISM International Centre for Mechanical Sciences, Vol. 557. Springer, Berlin (2014)

  29. Meshchersky I.V.: Rabotji po mehanike tel peremennoj massji. Gos.izd.tehniko-teoret.lit, Moscow (1952)

    Google Scholar 

  30. Cveticanin L., Djukic Dj.: Dynamic properties of a body with discontinual mass variation. Nonlinear Dyn. 52(3), 249–261 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Cveticanin L.: Dynamics of body separation—analytical procedure. Nonlinear Dyn. 55(3), 269–278 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Landau, L.D., Lifshitz, E.M.: Teoreticheskaja fizika. Tom I. Nauka, Moscow (1958)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Cveticanin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cveticanin, L. Principle of generalized velocities in dynamics of planar separation of a rigid body. Acta Mech 226, 2511–2525 (2015). https://doi.org/10.1007/s00707-015-1312-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-015-1312-8

Keywords

Navigation