Skip to main content
Log in

Characterization of free vibration of elastically supported double-walled carbon nanotubes subjected to a longitudinally varying magnetic field

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Free transverse vibrations of elastically supported double-walled carbon nanotubes (DWCNTs) subjected to axially varying magnetic fields are examined. Using nonlocal Rayleigh beam theory, the explicit expressions of the governing equations are obtained and then numerically solved via an efficient numerical scheme. For magnetically affected DWCNTs with simply supported, fully clamped, simple-clamped, and clamped-free ends, the flexural frequencies as well as the corresponding vibration modes are evaluated for different varying magnetic fields. The influences of the small-scale parameter and the magnetic field strength on the dominant flexural frequencies of the DWCNTs are explained and discussed. The results indicate that the vibration characteristics of DWCNTs can be significantly affected by the axially varying magnetic field. The role of variation of the axial magnetic field on the vibrational mode patterns of both the innermost and outermost tubes is also revealed. For a special applied magnetic field, the alteration from coaxial to noncoaxial vibration pattern is also reported. The obtained results display that the flexural frequencies magnify with the magnetic field strength. Generally, the variation of the magnetic field strength has more influence on the variation of the frequencies of DWCNTs with higher small-scale parameters. This matter is mainly attributed to the incorporation of the size effect into the nonlocal Lorentz forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li C., Thostenson E.T., Chou T.W.: Sensors and actuators based on carbon nanotubes and their composites: a review. Compos. Sci. Technol. 68, 1227–1249 (2008)

    Article  Google Scholar 

  2. Coleman J.N., Khan U., Blau W.J., Guńko Y.K.: Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006)

    Article  Google Scholar 

  3. Gibson R.F., Ayorinde E.O., Wen Y.F.: Vibrations of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 67, 1–28 (2007)

    Article  Google Scholar 

  4. Li C., Chou T.W.: Vibrational behaviors of multiwalled-carbon-nanotube-based nanomechanical resonators. Appl. Phys. Lett. 84, 121–123 (2004)

    Article  Google Scholar 

  5. Xu K.Y., Guo X.N., Ru C.Q.: Vibration of a double-walled carbon nanotube aroused by nonlinear intertube van der Waals forces. J. Appl. Phys. 99, 064303 (2006)

    Article  Google Scholar 

  6. Li C., Chou T.W.: Single-walled carbon nanotubes as ultrahigh frequency nanomechanical resonators. Phys. Rev. B 68, 073405 (2003)

    Article  Google Scholar 

  7. Yoon J., Ru C.Q., Mioduchowski A.: Vibration of an embedded multiwall carbon nanotube. Compos. Sci. Technol. 63, 1533–1542 (2003)

    Article  Google Scholar 

  8. Yas M.H., Samadi N.: Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int. J. Pres. Vessel Pip. 98, 119–128 (2012)

    Article  Google Scholar 

  9. Khosrozadeh A., Hajabasi M.A.: Free vibration of embedded double-walled carbon nanotubes considering nonlinear interlayer van der Waals forces. Appl. Math. Model. 36, 997–1007 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ke L.L., Xiang Y., Yang J., Kitipornchai S.: Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comp. Mater. Sci. 47, 409–417 (2009)

    Article  Google Scholar 

  11. Kiani K.: A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect. Int. J. Mech. Sci. 52, 1343–1356 (2010)

    Article  MathSciNet  Google Scholar 

  12. Kiani K.: Vibration analysis of elastically restrained double-walled carbon nanotubes on elastic foundation subjected to axial load using nonlocal shear deformable beam theories. Int. J. Mech. Sci. 68, 16–34 (2013)

    Article  Google Scholar 

  13. Wang L.: Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale. Comp. Mater. Sci. 45, 584–588 (2009)

    Article  Google Scholar 

  14. Lee H.L., Chang W.J.: Vibration analysis of a viscous-fluid-conveying single-walled carbon nanotube embedded in an elastic medium. Phys. E 41, 529–532 (2009)

    Article  Google Scholar 

  15. Wang L.: Wave propagation of fluid-conveying single-walled carbon nanotubes via gradient elasticity theory. Comp. Mater. Sci. 49, 761–766 (2010)

    Article  Google Scholar 

  16. Ghavanloo E., Rafiei M., Daneshmand F.: In-plane vibration analysis of curved carbon nanotubes conveying fluid embedded in viscoelastic medium. Phys. Lett. A 375, 1994–1999 (2011)

    Article  Google Scholar 

  17. Kiani K.: Vibration behavior of simply supported inclined single-walled carbon nanotubes conveying viscous fluids flow using nonlocal Rayleigh beam model. Appl. Math. Modell. 37, 1836–1850 (2013)

    Article  MathSciNet  Google Scholar 

  18. Pentaras D., Elishakoff I.: Dynamic deflection of a single-walled carbon nanotube under ballistic impact loading. J. Nanotechnol. Eng. Med. 2, 041002(1-4) (2011)

    Google Scholar 

  19. Rafiee R., Moghadam R.M.: Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling. Comput. Mater. Sci. 63, 261–268 (2012)

    Article  Google Scholar 

  20. Talebian S.T., Tahani M., Abolbashari M.H., Hosseini S.M.: Response of multiwall carbon nanotubes to impact loading. Appl. Math. Model. 37, 5359–5370 (2013)

    Article  MathSciNet  Google Scholar 

  21. Kiani K., Mehri B.: Assessment of nanotube structures under a moving nanoparticle using nonlocal beam theories. J. Sound Vib. 329, 2241–2264 (2010)

    Article  Google Scholar 

  22. Kiani K.: Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle, part I: theoretical formulations. Acta Mech. 216, 165–195 (2011)

    Article  MATH  Google Scholar 

  23. Kiani K.: Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle, part II: parametric study. Acta Mech. 216, 197–206 (2011)

    Article  MATH  Google Scholar 

  24. Kiani K.: Longitudinal and transverse vibration of a single-walled carbon nanotube subjected to a moving nanoparticle accounting for both nonlocal and inertial effects. Phys. E 42, 2391–2401 (2010)

    Article  Google Scholar 

  25. Kiani K., Wang Q.: On the interaction of a single-walled carbon nanotube with a moving nanoparticle using nonlocal Rayleigh, Timoshenko, and higher-order beam theories. Eur. J. Mech. A 31, 179–202 (2012)

    Article  MathSciNet  Google Scholar 

  26. Simsek M.: Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory. Phys. E 43, 182–191 (2010)

    Article  Google Scholar 

  27. Simsek M.: Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle. Comput. Mater. Sci. 50, 2112–2123 (2011)

    Article  Google Scholar 

  28. Chowdhury R., Adhikari S., Mitchell J.: Vibrating carbon nanotube based bio-sensors. Phys. E 42, 104–109 (2009)

    Article  Google Scholar 

  29. Joshi A.Y., Harsha S.P., Sharma S.C.: Vibration signature analysis of single walled carbon nanotube based nanomechanical sensors. Phys. E 42, 2115–2123 (2010)

    Article  Google Scholar 

  30. Georgantzinos S.K., Anifantis N.K.: Carbon nanotube-based resonant nanomechanical sensors: a computational investigation of their behavior. Phys. E 42, 1795–1801 (2010)

    Article  Google Scholar 

  31. Kiani K., Ghaffari H., Mehri B.: Application of elastically supported single-walled carbon nanotubes for sensing arbitrarily attached nano-objects. Curr. Appl. Phys. 13, 107–120 (2013)

    Article  Google Scholar 

  32. Wang H., Dong K., Men F., Yan Y.J., Wang X.: Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix. Appl. Math. Model. 34, 878–889 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Xie H.J., Wang X., Li Z.: Dynamic characteristics of multi-walled carbon nanotubes under longitudinal magnetic fields. Mech. Adv. Mater. Struct. 19, 568–575 (2012)

    Article  Google Scholar 

  34. Kiani K.: Transverse wave propagation in elastically confined single-walled carbon nanotubes subjected to longitudinal magnetic fields using nonlocal elasticity models. Phys. E 45, 86–96 (2012)

    Article  Google Scholar 

  35. Kiani K.: Magneto-elasto-dynamic analysis of an elastically confined conducting nanowire due to an axial magnetic shock. Phys. Lett. A 376, 1679–1685 (2012)

    Article  Google Scholar 

  36. Kiani K.: Magneto-thermo-elastic fields caused by an unsteady longitudinal magnetic field in a conducting nanowire accounting for eddy-current loss. Mater. Chem. Phys. 136, 589–598 (2012)

    Article  Google Scholar 

  37. Eringen A.C.: Linear theory of micropolar elasticity. J. Math. Mech. 15, 909–923 (1966)

    MathSciNet  MATH  Google Scholar 

  38. Eringen A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  39. Eringen A.C.: Nonlocal continuum field theories. Springer, New York (2002)

    MATH  Google Scholar 

  40. Gupta S.S., Batra R.C.: Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Comp. Mater. Sci. 43, 715–723 (2008)

    Article  Google Scholar 

  41. Lennard-Jones J.E.: The determination of molecular fields: from the variation of the viscosity of a gas with temperature. Proc. R. Soc. A 106, 441–462 (1924)

    Article  Google Scholar 

  42. Girifalco L.A., Lad R.A.: Energy of cohesion, compressibility and the potential energy function of graphite system. J. Chem. Phys. 25, 693–697 (1956)

    Article  Google Scholar 

  43. Girifalco L.A.: Interaction potential for (C60) molecules. J. Phys. Chem. 95, 5370–5371 (1991)

    Article  Google Scholar 

  44. Girifalco L.A., Hodak M., Lee R.S.: Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 62, 13104–13110 (2000)

    Article  Google Scholar 

  45. Saito R., Dresselhaus G., Dresselhaus M.S.: Physical Properties of Carbon Nanotubes. Imperial College, London (1998)

    Book  Google Scholar 

  46. He X.Q., Kitipornchai S., Liew K.M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids 53, 303–326 (2005)

    Article  MATH  Google Scholar 

  47. Maxwell J.C.: On Faraday’s lines of force, part I: the theory of molecular vortices applied to magnetic phenomena. Philos. Mag. 21, 161–175 (1861)

    Google Scholar 

  48. Maxwell J.C.: On Faraday’s lines of force, part II: The theory of molecular vortices applied to electric currents. Philos. Mag. 21, 338–348 (1861)

    Google Scholar 

  49. Maxwell J.C.: On Faraday’s lines of force, part III: The theory of molecular vortices applied to statical electricity. Philos. Mag. 23, 12–24 (1862)

    Google Scholar 

  50. Maxwell J.C.: On Faraday’s lines of force, part IV: The theory of molecular vortices applied to the action of magnetism and polarized light. Philos. Mag. 23, 85–95 (1862)

    Google Scholar 

  51. Wang Q.: Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J. Appl. Phys. 98, 124301(1-6) (2005)

    Google Scholar 

  52. Wang Q., Varadan V.K.: Vibration of carbon nanotubes studied using nonlocal continuum mechanics. Smart Mater. Struct. 15, 659–666 (2006)

    Article  Google Scholar 

  53. Wang Q., Zhou G.Y., Lin K.C.: Scale effect on wave propagation of double-walled carbon nanotubes. Int. J. Solids Struct. 43, 6071–6084 (2006)

    Article  MATH  Google Scholar 

  54. Liu W.K., Jun S., Li S., Adee J., Belytschko T.: Reproducing kernel particle methods for structural dynamics. Int. J. Numer. Method. Eng. 38, 1655–1679 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kiani K., Nikkhoo A., Mehri B.: Prediction capabilities of classical and shear deformable beam models excited by a moving mass. J. Sound Vib. 320, 632–648 (2009)

    Article  Google Scholar 

  56. Kiani K., Nikkhoo A.: On the limitations of linear beams for the problems of moving mass-beam interaction using a meshless method. Acta Mech. Sinica 28, 164–179 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Kiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiani, K. Characterization of free vibration of elastically supported double-walled carbon nanotubes subjected to a longitudinally varying magnetic field. Acta Mech 224, 3139–3151 (2013). https://doi.org/10.1007/s00707-013-0937-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-013-0937-8

Keywords

Navigation