Skip to main content
Log in

Coupled axisymmetric vibration of nonlocal fluid-filled closed spherical membrane shell

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the axisymmetric vibration of a fluid-filled spherical membrane shell is studied based on nonlocal elasticity theory. The membrane shell is considered elastic, homogeneous and isotropic. The shell model is reformulated using the nonlocal differential constitutive relations of Eringen. The membrane shell is completely filled with an inviscid fluid. The motion of the fluid is governed by the wave equation. Nonlocal governing equations of motion for the fluid-filled spherical membrane shell are derived. Along the contact surface between the membrane and the fluid, the compatibility requirement is applied and Legendre polynomials, associated Legendre polynomials and spherical Bessel functions are used to obtain the natural frequencies of the fluid-filled spherical membrane shells. The frequencies for both empty and fluid-filled spherical membrane shell are evaluated, and their comparisons are performed to confirm the validity and accuracy of the proposed method. An excellent agreement is found between the present and previous ones available in the literature. The variations of the natural frequencies with the small-scale parameter, density ratio, wave speed ratio and Poisson’s ratio are also examined. It is observed that the frequencies are affected when the size effect is taken into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hu J., Qiu Z., Su T.C.: Axisymmetric vibrations of a viscous-fluid-filled piezoelectric spherical shell and the associated radiation of sound. J. Sound Vib. 330, 5982 (2011)

    Article  Google Scholar 

  2. Rayleigh L.: On the vibrations of a gas contained within a rigid spherical envelope. P. Lond. Math. Soc. 4, 93 (1872)

    Google Scholar 

  3. Morse P.M., Feshbach H.: Methods of Theoretical Physics Part II. McGraw-Hill, New York (1953)

    Google Scholar 

  4. Rand R., Dimaggio F.: Vibrations of fluid-filled spherical and spheroidal shells. J. Acoust. Soc. Am. 42, 1278 (1967)

    Article  MATH  Google Scholar 

  5. Engin A.E., Liu Y.K.: Axisymmetric response of a fluid-filled spherical shell in free vibrations. J. Biomech. 3, 11 (1970)

    Article  Google Scholar 

  6. Advani S.H., Lee Y.C.: Free vibrations of fluid filled shells. J. Sound Vib. 12, 453 (1970)

    Google Scholar 

  7. Guarino J.C., Elger D.F.: Modal analysis of a fluid-filled elastic shell containing an elastic sphere. J. Sound Vib. 156, 461 (1992)

    Article  MATH  Google Scholar 

  8. Chen W.Q., Ding H.J.: Natural frequencies of a fluid-filled anisotropic spherical shell. J. Acoust. Soc. Am. 105, 174 (1999)

    Article  Google Scholar 

  9. Cai J.B., Chen W.Q., Ye G.R., Ding H.J.: Natural frequencies of submerged piezoceramic hollow spheres. Acta Mech. Sinica 16, 55 (2000)

    Article  Google Scholar 

  10. Li H., Liu Z., Lin Q.: Spherical-symmetric steady-state response of fluid-filled laminate piezoelectric spherical shell under external excitation. Acta Mech. 150, 53 (2001)

    Article  MATH  Google Scholar 

  11. Young P.G.: A parametric study on the axisymmetric modes of vibration of multi-layered spherical shells with liquid cores of relevance to head impact modeling. J. Sound Vib. 256, 665 (2002)

    Article  Google Scholar 

  12. Allen J.S., Rashid M.M.: Dynamics of a hyperelastic gas-filled spherical shell in a viscous fluid. J. Appl. Mech. 71, 195 (2004)

    Article  MATH  Google Scholar 

  13. Hu J., Qiu Z., Su T.C.: Axisymmetric vibrations of a piezoelectric spherical shell submerged in a compressible viscous fluid medium. J. Vib. Acoust. 132, 061002 (2010)

    Article  Google Scholar 

  14. Kroner E.: Elasticity theory of materials with long-range cohesive forces. Int. J. Solids Struct. 3, 731 (1967)

    Article  Google Scholar 

  15. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703 (1983)

    Article  Google Scholar 

  16. Eringen A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  17. Sudak L.J.: Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics. J. Appl. Phys. 94, 7281 (2003)

    Article  Google Scholar 

  18. Wang C.M., Zhang Y.Y., He X.Q.: Vibration of nonlocal Timoshenko beams. Nanotechnology 18, 105401 (2007)

    Article  Google Scholar 

  19. Reddy J.N.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45, 288 (2007)

    Article  MATH  Google Scholar 

  20. Wang Q., Liew K.M.: Application of nonlocal continuum mechanics to static analysis of micro- and nano-structures. Phys. Lett. A 363, 236 (2007)

    Article  Google Scholar 

  21. Lu P., Zhang P.Q., Lee H.P., Wang C.M., Reddy J.N.: Non-local elastic plate theories. Proc. R. Soc. A 463, 3225 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ece M.C., Aydogdu M.: Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes. Acta Mech. 190, 185 (2007)

    Article  MATH  Google Scholar 

  23. Unnikrishnan V.U., Unnikrishnan G.U., Reddy J.N.: Multiscale nonlocal thermo-elastic analysis of graphene nanoribbons. J. Therm. Stress. 32, 1087 (2009)

    Article  Google Scholar 

  24. Kiani K.: Application of nonlocal beam models to double-walled carbon nanotubes under a moving nanoparticle. Part I: theoretical formulations. Acta Mech. 216, 165 (2011)

    Article  MATH  Google Scholar 

  25. Fazelzadeh S.A., Ghavanloo E.: Nonlocal anisotropic elastic shell model for vibrations of single-walled carbon nanotubes with arbitrary chirality. Compos. Struct. 94, 1016 (2012)

    Article  Google Scholar 

  26. Tachibana K., Tachibana S.: Application of ultrasound energy as a new drug delivery system. Jpn. J. Appl. Phys. 38, 3014 (1999)

    Article  Google Scholar 

  27. Wang C.Q., Wu C.: Vibrations of a hollow nanosphere with a porous thin shell in liquid. Macromolecules 36, 9285 (2003)

    Article  Google Scholar 

  28. Eringen A.C.: Linear theory of non-local elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425 (1972)

    Article  MATH  Google Scholar 

  29. Silbiger A.: Nonaxisymmetric modes of vibration of thin spherical shells. J. Acoust. Soc. Am. 34, 862 (1962)

    Article  Google Scholar 

  30. Nayfeh A.H., Arafat H.N.: Axisymmetric vibrations of closed spherical shells: Equations of motion and bifurcation analysis. Struct. Control Health Monit. 13, 388 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ahmad Fazelzadeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazelzadeh, S.A., Ghavanloo, E. Coupled axisymmetric vibration of nonlocal fluid-filled closed spherical membrane shell. Acta Mech 223, 2011–2020 (2012). https://doi.org/10.1007/s00707-012-0692-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-012-0692-2

Keywords

Navigation