Skip to main content
Log in

Finite element and analytical fluid-structure interaction analysis of the pneumatically actuated diaphragm microvalves

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the fluid flow and the diaphragm deflection are studied in the pneumatically actuated diaphragm microvalve by performing finite element and analytical fluid-structure interaction simulations. The results of these approaches are compared and their validity is discussed. An analytical relation is obtained for the critical diaphragm deflection which leads to unstable response of the microvalve. This relation shows that the critical deflection is only a function of the microvalve geometry, namely its inlet height and outlet radius. The phenomenon of the diaphragm deflection jump is justified in the microvalve behavior. The effect of different fluid flow and diaphragm parameters on the microvalve response is investigated that can be used to improve the microvalve design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oh K.W., Ahn C.H.: A review of microvalves. J. Micromech. Microeng. 16, R13–R39 (2006)

    Article  Google Scholar 

  2. Luharuka R., LeBlanc S., Bintoro J.S., Berthelot Y.H., Hesketh P.J.: Simulated and experimental dynamic response characterization of an electromagnetic microvalve. Sens. Actuators A Phys. 143, 399–408 (2008)

    Article  Google Scholar 

  3. Takao H., Miyamura K., Ebi H., Ashiki M., Sawada K., Ishida M.: A MEMS microvalve with PDMS diaphragm and two-chamber configuration of thermo-pneumatic actuator for integrated blood test system on silicon. Sens. Actuators A Phys. 119, 468–475 (2005)

    Article  Google Scholar 

  4. Pelesko J.A., Bernstein D.H.: Modeling MEMS and NEMS. Chapman & Hall/CRC, London (2003)

    MATH  Google Scholar 

  5. Yoo J.C., Choi Y.J., Kang C.J., Kim Y.S.: A novel polydimethylsiloxane microfluidic system including thermopneumatic-actuated micropump and Paraffin-actuated microvalve. Sens. Actuators A Phys. 139, 216–220 (2007)

    Article  Google Scholar 

  6. Kim J.H., Na K.H., Kang C.J., Jeon D., Kim Y.S.: A disposable thermopneumatic-actuated microvalve stacked with PDMS layers and ITO-coated glass. Microelectron. Eng. 73(74), 864–869 (2004)

    Article  Google Scholar 

  7. Li H.Q., Roberts D.C., Steyn J.L., Turner K.T., Yaglioglu O., Hagood N.W., Spearing S.M., Schmidt M.A.: Fabrication of a high frequency piezoelectric microvalve. Sens. Actuators A: Phys. 111, 51–56 (2004)

    Article  Google Scholar 

  8. Roberts D.C., Li H., Steyn J.L., Yaglioglu O., Spearing S.M., Schmidt M.A., Hagood N.W.: A Piezoelectric Microvalve for Compact High-Frequency, High-Differential Pressure Hydraulic Micropumping Systems. J. Microelectromech. Syst. 2, 81–92 (2003)

    Article  Google Scholar 

  9. Kim H., In C., Yoon G., Kim J.: A slim type microvalve driven by PZT films. Sens. Actuators A: Phys. 121, 162–171 (2005)

    Article  Google Scholar 

  10. Yoshida K., Tanaka S., Hagihara Y., Tomonari S., Esashi M.: Normally closed electrostatic microvalve with pressure balance mechanism for portable fuel cell application part I: design and simulation. Sens. Actuators A: Phys. 157, 299–306 (2010)

    Article  Google Scholar 

  11. Tanaka K.Y.S, Hagihara Y., Tomonari S., Esashi M.: Normally closed electrostatic microvalve with pressure balance mechanism for portable fuel cell application. Sens. Actuators A: Phys. 157, 290–298 (2010)

    Article  Google Scholar 

  12. Gong Q., Zhou Z., Yang Y., Wang X.: Design, optimization, and simulation on microelectromagnetic pump. Sens. Actuators A 83, 200–207 (2000)

    Article  Google Scholar 

  13. Bintoro J.S., Hesketh P.J., Berthelot Y.H.: CMOS compatible bistable electromagnetic microvalve on a single wafer. Microelectron. J. 36, 667–672 (2005)

    Article  Google Scholar 

  14. Vieider, C., Ohman, O., Elderstig, H.: A pneumatically actuated micro valve with silicone rubber membrane The 8th International Conference on Solid-State Sensors and Actuators, and Eurosensors IX, Sweden, 284–286(1995)

  15. Yang F., Kao I.: Analysis of fluid flow and deflection for pressure-balanced MEMS diaphragm valves. Sens. Actuators 79, 13–21 (2000)

    Article  Google Scholar 

  16. Wachutka, G.: Coupled-field modeling of microdevices and microsystems. In: Proceeding of the International Conference on Simulation of Semiconductor Processes and Devices, SISPAD 2002, Germany, 9–14 (2002)

  17. Huff, M.A., Schmidt M.A.: Fabrication packaging and testing of a wafer-bonded microvalve. In: Proceedings IEEE Solid State Sensor and Actuator Workshop, Hilton Head Island, SC, 194–197 (1992)

  18. Timoshenko S.: Theory of Plates and Shells. McGraw-Hill, NY (1989)

    Google Scholar 

  19. Wang C.M., Reddy J.N., Lee K.H.: Shear deformable beams and plates, relationships with classical solutions. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

  20. White F.M.: Fluid Mechanics, 4th edn. McGraw-Hill, NY (2002)

    Google Scholar 

  21. Wang C.Y.: Axisymmetrically supported heavy circular plate. Thin-Walled Structures 42, 1709–1718 (2004)

    Article  Google Scholar 

  22. Zhang Q., Hisada T.: Analysis of fluid-structure interaction problems with structural buckling and large domain changes by ALE finite element method. Comput. Method. Appl. Mech. Eng. 190, 6341–6357 (2001)

    Article  MATH  Google Scholar 

  23. Afrasiab, H., Movahhedy, M.R., Assempour A.: Fluid–structure interaction analysis in microfluidic devices: A dimensionless finite element approach. Int. J. Numer. Meth. Fluids. doi:10.1002/fld.2592 (2011)

  24. Donea J., Huerta A.: Finite Element Methods for Flow Problems. Wiley, Chichester (2003)

    Book  Google Scholar 

  25. Belytschko T., Liu W.K., Moran B.: Nonlinear finite element for continua and structures. Wiley, NY (2000)

    Google Scholar 

  26. Horn, J., Turek, S.: Proposal for Numerical Benchmarking of Fluid-Structure Interaction between an Elastic Object and Laminar Incompressible Flow. In: Bungartz, H.J., Schafer, M. Fluid-Structure Interaction: Modelling, Simulation, Optimisation LNCSE., Springer, Berlin (2006)

  27. Stein K., Tezduyar T.E., Benney R.: Mesh moving techniques for fluid-structure interactions with large displacements. J. Appl. Mech. 70, 59–63 (2003)

    Google Scholar 

  28. Cavallo P.A., Hosangadi A., Lee R.A., Dash S.M.: Dynamic unstructured grid methodology with application to aero/propulsive flowfields. AIAA Paper 97, 2310 (1997)

    Google Scholar 

  29. Farhat C., Degand C., Koobus B., Lesoinne M.: Torsional springs for two dimensional dynamic unstructured fluid meshes. Comput. Method. Appl. Mech. Engrg. 163, 231–245 (1998)

    Article  MATH  Google Scholar 

  30. Gao X.W., Chen P.C., Tang L.: Deforming mesh for computational aeroelasticity using a nonlinear elastic boundary element method. AIAA J. 40, 1512–1517 (2002)

    Article  Google Scholar 

  31. Johnson A.A., Tezduyar T.E.: Advanced mesh generation and update methods for 3D flow simulations. Comput. Mech. 23, 130–143 (1999)

    Article  MATH  Google Scholar 

  32. Yoseph P.Z.B., Mereu S., Chippada S., Kalro V.J.: Automatic monitoring of element shape quality in 2-D and 3-D computational mesh dynamics. Comput. Mech. 27, 378–395 (2001)

    Article  MATH  Google Scholar 

  33. Nielsen E.J., Anderson W.K.: Recent improvements in aerodynamic design optimization on unstructured meshes. AIAA J. 40, 1155–1163 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Movahhedy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Afrasiab, H., Movahhedy, M.R. & Assempour, A. Finite element and analytical fluid-structure interaction analysis of the pneumatically actuated diaphragm microvalves. Acta Mech 222, 175 (2011). https://doi.org/10.1007/s00707-011-0508-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-011-0508-9

Keywords

Navigation