Skip to main content
Log in

Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper reports the nonlinear dynamic stability characteristics of laminated composite cylindrical (CYL) and spherical (SPH) shells integrated with piezoelectric layers using the finite element method. The shells are subjected to a thermal environment in addition to the in-plane periodic load and the electric load. The theoretical formulation considers Sanders’ approximation for doubly curved shells, and von Kármán type nonlinear strains are incorporated into the first-order shear deformation theory (FSDT). The formulation includes the effects of transverse shear, in-plane and rotatory inertia. The in-plane periodic load is taken as the parametric excitation in the governing equation. The nonlinear matrix amplitude equation is obtained by employing Galerkin’s method. The correctness of the formulation is established by comparing the authors’ results with those available in the published literature. Detailed parametric studies are carried out to investigate the effects of different parameters on the dynamic stability characteristics of laminated composite shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bolotin V.V.: The Dynamic Stability of Elastic Systems. Holden-Day, San Francisco (1964)

    MATH  Google Scholar 

  2. Bieniek M.P., Fan T.C., Lackman L.M.: Dynamic stability of cylindrical shells. AIAA J. 4, 495–500 (1966)

    Article  Google Scholar 

  3. Sahu S.K., Datta P.K.: Research advances in the dynamic stability behavior of plates and shells: 1987–2005—part I: Conservative systems. Appl. Mech. Rev. ASME 60, 65–75 (2007)

    Article  Google Scholar 

  4. Evensen H.A., Evan-Iwanowski R.M.: Dynamic response and stability of shallow spherical shells subject to time-dependent loading. AIAA J. 5, 969–975 (1967)

    Article  MATH  Google Scholar 

  5. Yamaki N., Nagai K.: Dynamic stability of circular cylindrical shells under periodic shearing forces. J. Sound Vib. 45, 513–527 (1976)

    Article  MATH  Google Scholar 

  6. Yamaki N., Nagai K.: Dynamic stability of circular cylindrical shells under periodic compressive forces. J. Sound Vib. 58, 425–441 (1978)

    Article  MATH  Google Scholar 

  7. Ray H.: Dynamic instability of suddenly heated, angle-ply laminated composite cylindrical shells. Comput. Struct. 16, 119–124 (1983)

    Article  MATH  Google Scholar 

  8. Ray H., Bert C.W.: Dynamic instability of suddenly heated, thick, composite shells. Int. J. Eng. Sci. 22, 1259–1268 (1984)

    Article  MATH  Google Scholar 

  9. Birman V., Bert C.W.: Dynamic stability of reinforced composite cylindrical shells in thermal fields. J. Sound Vib. 142, 183–190 (1990)

    Article  Google Scholar 

  10. Ganapathi M., Varadan T.K., Balamurugan V.: Dynamic instability of laminated composite curved panels using finite element method. Comput. Struct. 53, 335–342 (1994)

    Article  MATH  Google Scholar 

  11. Ng T.Y., Lam K.Y., Reddy J.N.: Parametric resonance of a rotating cylindrical shell subjected to periodic axial load. J. Sound Vib. 214, 513–529 (1998)

    Article  Google Scholar 

  12. Popov A.A.: Parametric resonance in cylindrical shells: A case study in the nonlinear vibration of structural shells. Eng. Struct. 25, 789–799 (2003)

    Article  Google Scholar 

  13. Birman V., Bert C.W.: Nonlinear parametric instability of antisymmetric laminated angle-ply plates. Dyn. Sys. 3, 57–67 (1988)

    Article  MATH  Google Scholar 

  14. Librescu L., Thangjitham S.: Parametric instability of laminated composite shear-deformable flat panels subjected to in-plane edge loads. Int. J. Non-linear Mech. 25, 263–273 (1990)

    Article  MATH  Google Scholar 

  15. Tylikowski A.: Dynamic stability of non-linear antisymmetrically laminated angle-ply plates. Int. J. Non-linear Mech. 28, 291–300 (1993)

    Article  MATH  Google Scholar 

  16. Marin J.C., Perkins N.C., Vorus W.S.: Non-linear response of predeformed plates subject to harmonic in-plane edge loading. J. Sound Vib. 176, 515–529 (1994)

    Article  MATH  Google Scholar 

  17. Balamurugan V., Ganapathi M., Varadan T.K.: Nonlinear dynamic instability of laminated composite plates using the finite element method. Comput. Struct. 60, 125–130 (1996)

    Article  MATH  Google Scholar 

  18. Ganapathi M., Boisse P., Solaut D.: Nonlinear dynamic stability analysis of composite laminates under periodic in-plane compressive loads. Int. J. Numer. Methods. Eng. 46, 943–956 (1999)

    Article  MATH  Google Scholar 

  19. Wu G.Y., Shih Y.S.: Analysis of dynamic instability for arbitrarily laminated skew plates. J. Sound Vib. 292, 315–340 (2006)

    Article  Google Scholar 

  20. Singha M.K., Daripa R.: Nonlinear vibration and dynamic stability analysis of composite plates. J. Sound Vib. 328, 541–554 (2009)

    Article  Google Scholar 

  21. Chen L.-W., Lin C.-Y., Wang C.-C.: Dynamic stability analysis and control of a composite beam with piezoelectric layers. Compos. Struct. 56, 97–109 (2002)

    Article  Google Scholar 

  22. Wang S.Y., Quek S.T., Ang K.K.: Dynamic stability analysis of finite element modeling of piezoelectric composite plates. Int. J. Solid Struct. 41, 745–764 (2004)

    Article  MATH  Google Scholar 

  23. Shariyat M.: Dynamic buckling of imperfect laminated plates with piezoelectric sensors and actuators subjected to thermo-electro-mechanical loadings, considering the effect of temperature dependency of the material properties. Compos. Struct. 88, 228–239 (2009)

    Article  Google Scholar 

  24. Reddy J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd edn. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  25. Huang X.-L., Shen H.-S.: Nonlinear free and forced vibration of simply supported shear deformable laminated plates with piezoelectric actuators. Int. J. Mech. Sci. 47, 187–208 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lewandowski R.: Free vibration of structures with cubic nonlinearity—remarks on amplitude equation and Rayleigh quotient. Comput. Meth. Appl. Mech. Eng. 192, 1681–1709 (2003)

    Article  MATH  Google Scholar 

  27. Shen H.-S.: Postbuckling of shear of deformable laminated plates with piezoelectric actuators under complex loading conditions. Int. J. Solid Struct. 38, 7703–7721 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Pradyumna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pradyumna, S., Gupta, A. Nonlinear dynamic stability of laminated composite shells integrated with piezoelectric layers in thermal environment. Acta Mech 218, 295–308 (2011). https://doi.org/10.1007/s00707-010-0424-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0424-4

Keywords

Navigation