Skip to main content
Log in

Prediction of mode I crack growth resistance based on a comparative investigation of J-integral and energy dissipation rate concept

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

An energy dissipation rate concept is employed in conjunction with the J-integral to calculate crack growth resistance of elastic-plastic fracture. Different from Rice’s J-integral, the free energy density is employed in place of the stress working density to define an energy-momentum tensor, which yields that the slightly changed J-integral is path dependent regardless of incremental plasticity and deformational plasticity. The J-integral over the remote contour is split into the plastic influence term and the J FPZ-integral over the fracture process zone which is an appropriate estimate of the separation work of fracture. Finite element simulations are carried out to predict the plane strain mode I crack growth behavior by an embedded fracture process zone. It can be concluded that J-integral characterization is in essence a stress intensity-based fracture resistance similar to the K criterion of linear elastic fracture, and energy dissipation rate fracture resistance can be taken as an extension of the Griffith criterion to the elastic-plastic fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orowan E.: Fatigue and fracture of metals. Wiley, New York (1952)

    Google Scholar 

  2. Irwin G.R.: Fracturing of metals, pp. 147–166. ASM, Cleveland (1949)

    Google Scholar 

  3. McClintock, F.A., Irwin, G.R.: Fracture toughness testing and its applications ASTM STP, 381 (1965)

  4. Rice J.R., Sorensen E.P.: Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids. J. Mech. Phys. Solids 26, 163–186 (1978)

    Article  MATH  Google Scholar 

  5. Rice, J.R., Drugan, W.J., Sham, T.L.: Fracture Mechanics: 12th Conference-STP 700. p. 189. Philadelphia, PA (1980)

  6. Dugdale D.S.: Yielding steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    Article  Google Scholar 

  7. Barenblatt G.I.: Mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech 7, 55–129 (1962)

    Article  MathSciNet  Google Scholar 

  8. Needleman A.: A continuum model for void nucleation by inclusion debonding. J. Appl. Mech. 54, 525–531 (1987)

    Article  MATH  Google Scholar 

  9. Tvergaard V., Hutchinson J.W.: The relation between crack growth resistance and fracture process parameters in elastic-plastic solids. J. Mech. Phys. Solids 40, 1377–1397 (1992)

    Article  MATH  Google Scholar 

  10. Gurson A.L.: Continuum theory of ductile rupture by void nucleation and growth—I. Yield criteria and flow rules for porous ductile media. J. Eng. Mater. Technol. 99, 2–15 (1977)

    Article  Google Scholar 

  11. Tvergaard V., Needleman A.: Analysis of the cup–cone fracture in a round tensile bar. Acta Metal. 32, 157–169 (1984)

    Article  Google Scholar 

  12. Tvergaard V.: Material failure by void growth to coalescence. Adv. Appl. Mech. 27, 83–151 (1990)

    Article  MATH  Google Scholar 

  13. Siegmund T., Brocks W.: Prediction of the work of separation in ductile failure and implications to the modeling of ductile failure. Int. J. Fract. 99, 97–116 (1999)

    Article  Google Scholar 

  14. Rousselier G.: Ductile fracture models and their potential in local approach of fracture. Nucl. Eng. Des. 105, 97–111 (1987)

    Article  Google Scholar 

  15. Rousselier G.: Dissipation in porous metal plasticity and ductile fracture. J. Mech. Phys. Solids 49, 1727–1746 (2001)

    Article  MATH  Google Scholar 

  16. Rice J.R.: A path independent integral and the approximate analysis of strain concentrations by notches and cracks. J. Appl. Mech. 35, 379–386 (1968)

    Google Scholar 

  17. Xia L., Shih C.F.: Ductile crack growth—I. A numerical study using computational cells with microstructurally-based length scales. J. Mech. Phys. Solids 43, 233–259 (1995)

    Article  MATH  Google Scholar 

  18. Kishimoto K., Aoki S., Sakata M.: On the path independent integral (modified J integral in fracture mechanics). Eng. Fract. Mech. 13, 841–850 (1980)

    Article  Google Scholar 

  19. Simha N.K., Fischer F.D., Shan G.X., Chen C.R, Kolednik O.: J-integral and crack driving force in elastic–plastic materials. J. Mech. Phys. Solids 56, 2876–2895 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kolednik O.: On the physical meaning of the J-1a-curves. Eng. Fract. Mech. 38, 403–412 (1991)

    Article  Google Scholar 

  21. Turner, C.E.: A re-assessment of ductile tearing resistance, part I: the geometry dependence of J–R curves in fully plastic bending. Eighth European Conference on Fracture, Warley, UK: EMAS 933–949 (1990)

  22. Turner, C.E.: A re-assessment of ductile tearing resistance, part II: energy dissipation rate and associate R-curves on normalized axes. Eighth European Conference on Fracture, Warley, UK: EMAS 951–968 (1990)

  23. Turner C.E., Kolednik O.: A micro and macro approach to the energy dissipation rate model of stable ductile crack growth. Fatig. Fract. Eng. Mater. Struct. 17, 1089–1107 (1994)

    Article  Google Scholar 

  24. Kolednik O., Turner C.E.: Application of energy dissipation rate arguments to ductile instability. Fatig. Fract. Eng. Mater. Struct. 17, 1129–1145 (1994)

    Article  Google Scholar 

  25. Siegmund T., Brocks W.: A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture. Eng. Fract. Mech. 67, 139–154 (2000)

    Article  Google Scholar 

  26. Memhard D., Brocks W., Fricke S.: Characterization of ductile tearing resistance by energy dissipation rate. Fatig. Fract. Eng. Mater. Struct. 16, 1109–1124 (1993)

    Article  Google Scholar 

  27. Sumpter J.D.G.: An alternative view of R curve testing. Eng. Fract. Mech. 64, 161–176 (1999)

    Article  Google Scholar 

  28. Tvergaard V.: Influence of voids on shear band instabilities under plane strain conditions. Int. J. Fract. 17, 389–407 (1981)

    Article  Google Scholar 

  29. Tvergaard V.: On localization in ductile materials containing voids. Int. J. Fract. 18, 237–251 (1982)

    Google Scholar 

  30. Brown, L.M., Embury, J.D.: The initiation and growth of voids at second phase . In: Proceedings of the 3rd International Conference on Strength of Metals and Alloys, Institute of Metals, pp. 164–169. London (1973)

  31. Goods S.H., Brown L.M.: The nucleation of cavities by plastic deformation. Acta Metal. 27, 1–15 (1979)

    Article  Google Scholar 

  32. Andersson H.: Analysis of a model for void growth and coalescence ahead of a moving crack tip. J. Mech. Phys. Solids 25, 217–233 (1977)

    Article  Google Scholar 

  33. Ziegler H.: An Introduction to Thermomechanics, 1st edn. North Holland, Amsterdam (1983)

    MATH  Google Scholar 

  34. Lemaitre J., Chaboche J.L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  35. Gurtin M.E., Podio-Guidugli P.: Configurational forces and the basic laws for crack propagation. J. Mech. Phys. Solids 44, 905–927 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Gurtin M.E.: The nature of configurational forces. Arch. Ration. Mech. Anal. 131, 67–100 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  37. Ortiz M., Pandolfi A.: Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int. J. Numer. Methods Eng. 44, 1267–1282 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Lin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Q.L., Wu, L., Li, M. et al. Prediction of mode I crack growth resistance based on a comparative investigation of J-integral and energy dissipation rate concept. Acta Mech 215, 175–191 (2010). https://doi.org/10.1007/s00707-010-0329-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0329-2

Keywords

Navigation