Skip to main content
Log in

Convection in superposed fluid and porous layers

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper reports an analytical study of the stability and natural convection in a system consisting of a horizontal fluid layer over a layer of saturated porous medium. Neumann thermal boundary conditions are applied to the horizontal walls of the enclosure while the vertical walls are impermeable and adiabatic. At the interface between the fluid and the porous layers the empirical slip condition, suggested by Beavers and Joseph, is employed. An analytical solution is obtained using a parallel flow approximation, for constant-flux thermal boundary conditions, for which the onset of supercritical cellular convection occurs at a vanishingly small wavenumber and can thus be predicted by the present theory. The critical Rayleigh number, Ra c , and Nusselt number, Nu, are found to depend on the depth ratio, η, the Darcy number, Da, the thermal conductivity ratio, γ and the slip parameter α. Results are presented for a wide range of each of the governing parameters. The results are compared with limiting cases of the problem and are found to be in agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Aspect ratio of the cavity, L′/H

C f :

Specific heat of the fluid

C :

Dimensionless temperature gradient in the x-direction

Da :

Darcy number, K/H '2

g :

Gravitational acceleration, m/s2

H′:

Height of the enclosure, m

\({{h}'_f }\) :

Thickness of fluid layer, m

\({{h}'_p }\) :

Thickness of porous layer, m

K :

Permeability of porous layer, m2

k f :

Thermal conductivity of the fluid, W/(m K)

k p :

Thermal conductivity of the porous medium, W/(m K)

L′:

Width of enclosure, m

Nu :

Nusselt number, \({Nu=(1/\Delta T)/[(\eta +\gamma \bar \eta)/\gamma ]}\)

P′:

Pressure in the fluid layer, N/m2

\({{P}'_p }\) :

Pressure in the porous medium, N/m2

Pr :

Prandtl number, ν /α f

q′:

Constant heat flux per unit area, W/m2

R :

Darcy–Rayleigh number, \({gK\beta'_T \Delta {T}'{H}'/\alpha_f v}\)

R c :

Critical Darcy–Rayleigh number

Ra :

Rayleigh number, \({g{\beta}'_T \Delta T'H^{'3}/\alpha_f \nu }\)

Ra c :

Critical Rayleigh number

T′:

Temperature in the fluid layer, K

\({{T}'_p }\) :

Temperature in the porous layer, K

\({{T}'_r }\) :

Reference temperature at y′ = 0, K

u′:

Horizontal velocity component in the fluid layer, m/s

\({{u}'_p }\) :

Horizontal velocity component in the porous layer, m/s

v′:

Vertical velocity component in the fluid layer, m/s

\({{v}'_p }\) :

Vertical velocity component in the porous layer, m/s

x :

Dimensionless coordinate axis (x′/H′)

y :

Dimensionless coordinate axis (y′/H′)

α :

Dimensionless slip parameter

α f :

Thermal diffusivity of the fluid, m2/s

\({{\beta}'_T }\) :

Thermal expansion coefficient, K−1

γ :

Dimensionless parameter (k p /k f )

η :

Dimensionless thickness of the porous layer \({({h}'_p /{H}')}\)

\({\bar \eta}\) :

Dimensionless thickness of the fluid layer (1−η)

θ :

Dimensionless temperature variation with y in the fluid layer

θ p :

Dimensionless temperature variation with y in the porous layer

μ :

Dynamic viscosity of the fluid, Ns/m2

ν :

Kinematic viscosity of the fluid, m2/s

ρ :

Density of the fluid, kg/m3

Ψ:

Dimensionless stream function in the fluid layer

Ψ p :

Dimensionless stream function in the porous layer

c :

Critical condition

f :

Refers to the fluid layer

p :

Refers to the porous medium

r :

Reference state

′:

Refers to a dimensional variable

References

  1. Nield D.A., Bejan A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

    Google Scholar 

  2. Somerton C.W., Catton I.: On the thermal instability of superposed porous and fluid layers. J. Heat Transf. 104, 160–165 (1982)

    Article  Google Scholar 

  3. Nishimura T., Takumi T., Shiraishi M., Kawamura Y., Ozoe H.: Numerical analysis of natural convection in a rectangular horizontally cavity divided into fluid and porous region. Int. J. Heat Mass Transf. 26, 889–898 (1986)

    Google Scholar 

  4. Vasseur P., Wang C.H., Sen M.: Thermal instability and natural convection in a fluid layer over a porous substrate. Waerme-Stoffuebertragung 24, 337–347 (1989)

    Article  Google Scholar 

  5. Chen Y.H., Lin H.T.: Natural convection in an inclined enclosure with a fluid layer and heat-generating porous bed. Heat Mass Transf. 33, 247–255 (1997)

    Article  Google Scholar 

  6. Saghir M.Z., Comi P., Mehrvar M.: Effects of interaction between Rayleigh and Marangoni convection in superposed fluid and porous layers. Int. J. Therm. Sci. 41, 207–215 (2002)

    Article  Google Scholar 

  7. Beavers G.S., Joseph D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  Google Scholar 

  8. Nield D.A.: Onset of convection in a fluid layer overlying a layer of porous medium. J. Fluid Mech. 81, 513–522 (1977)

    Article  MATH  Google Scholar 

  9. Nield D.A.: Boundary correction for the Rayleigh–Darcy problem: limitations of the Brinkman equation. J. Fluid Mech. 128, 37–46 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  10. Pillatsis G., Taslin M.E., Narusawa U.: Thermal instability of a fluid-saturated porous medium bounded by thin fluid layers. J. Heat Transf. 109, 677–682 (1987)

    Article  Google Scholar 

  11. Chen F., Chen C.F., Pearlsein A.J.: Convective instability in superposed fluid and anisotropic porous layers. Phys. Fluids 4, 556–565 (1991)

    Google Scholar 

  12. Shivakumara I.S., Suma S.P., Chavaraddi K.B.: Onset of surface-tension-driven convection in superposed layers of fluid and saturated porous medium. Arch. Mech. 58, 71–92 (2006)

    MATH  MathSciNet  Google Scholar 

  13. Jones I.P.: Low Reynolds number flow past a porous spherical shell. Proc. Camb. Phil. Soc. 73, 231–238 (1973)

    Article  MATH  Google Scholar 

  14. Valenca-Lopez J.J., Ochoa-Tapia J.A.: A study of buoyancy-driven flow in a confined fluid overlying a porous layer. Int. J. Heat Mass Transf. 44, 4725–4736 (2001)

    Article  Google Scholar 

  15. Alazmi B., Vafai K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 44, 1735–1749 (2001)

    Article  MATH  Google Scholar 

  16. Hirata S.C., Goyeau B., Gobin D.: Stability of natural convection in superposed fluid and porous layers: influence of the interfacial jump boundary condition. Phys. Fluids 19, 058102 (2007)

    Article  Google Scholar 

  17. Hirata S.C., Goyeau B., Gobin D., Carr M., Cotta R.M.: Linear stability of natural convection in superposed fluid and porous layers: influence of the interfacial modeling. Int. J. Heat Mass Transf. 50, 1356–1367 (2007)

    Article  MATH  Google Scholar 

  18. Hirata S.C., Goyeau B., Gobin D.: Stability of thermosolutal natural convection in superposed fluid and porous layers. Transp. Porous Med. 78, 525–536 (2009)

    Article  Google Scholar 

  19. Hirata S.C., Goyeau B., Gobin D., Chandesris M., Jamet D.: Stability of natural convection in superposed fluid and porous layers: Equivalence of the one- and two-domain approaches. Int. J. Heat Mass Transf. 52, 533–536 (2009)

    Article  MATH  Google Scholar 

  20. Cormack D.E., Leal L.G., Inberger J.: Natural convection in a shallow cavity with differentially heated end walls. Part 1. Asymptotic theory. J. Fluid Mech. 65, 209–230 (1974)

    Article  MATH  Google Scholar 

  21. Vasseur P., Wang C.H., Sen M.: The Brinkman model for natural convection in shallow porous cavity with uniform heat flux. Num. Heat Transf. 15, 221–242 (1989)

    Article  Google Scholar 

  22. Sen M., Vasseur P., Robillard L.: Multiple steady states for unicellular natural convection in an inclined porous layer. Int. J. Heat Mass Transf. 30, 2097–2113 (1987)

    Article  MATH  Google Scholar 

  23. Sen M., Vasseur P., Robillard L.: Parallel flow convection in a tilted two-dimensional porous layer heated from below. Phys. Fluids 31, 3480–3487 (1988)

    Article  Google Scholar 

  24. Bahloul A., Vasseur P., Robillard L.: Convection of a binary fluid saturating a shallow porous cavity subjected to cross heat fluxes. J. Fluid Mech. 574, 317–342 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  25. Bejan A.: The boundary layer regime in a porous layer with uniform heat flux from the side. Int. J. Heat Mass Transf. 26, 1339–1346 (1983)

    Article  MATH  Google Scholar 

  26. Nield D.A.: Onset of thermohaline convection in a porous medium. Water Resour. Res. 4, 553–560 (1968)

    Article  Google Scholar 

  27. Sparrow E.M., Goldstein R.J., Jonsson V.K.: Thermal instability in a horizontal fluid layer: effect of boundary conditions and nonlinear temperature profile. J. Fluid Mech. 18, 513–528 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  28. Vasseur P., Robillard L., Sen M.: Unicellular convective motion in an inclined fluid layer with uniform heat flux. ASME Heat Transf. Div. 94, 23–29 (1987)

    Google Scholar 

  29. Vasseur P., Satish M., Robillard L.: Natural convection in a thin inclined porous layer exposed to a constant heat flux. Int. J. Heat Mass Transf. 30, 537–549 (1987)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zineddine Alloui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alloui, Z., Vasseur, P. Convection in superposed fluid and porous layers. Acta Mech 214, 245–260 (2010). https://doi.org/10.1007/s00707-010-0284-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-010-0284-y

Keywords

Navigation