Skip to main content
Log in

A thermodynamic framework to develop rate-type models for fluids without instantaneous elasticity

  • Published:
Acta Mechanica Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Rajagopal K.R., Srinivasa A.R.: On the thermomechanics of materials that have multiple natural configurations. Part I: viscoelasticity and classical plasticity. ZAMP 55, 861–893 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rajagopal K.R., Srinivasa A.R.: Inelastic behavior of materials. Part II. Energetics associated with discontinuous deformation twinning. Int. J. Plast. 13, 1–35 (1997)

    Article  MATH  Google Scholar 

  3. Eckart C.: The thermodynamics of irreversible processes. IV. The theory of elasticity and anelasticity. Phys. Rev. 73, 373–382 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  4. Rajagopal, K.R.: Multiple configurations in continuum mechanics. Reports Inst. Comput. Appl. Mech. 6 (1995)

  5. Rao I.J., Rajagopal K.R.: A thermodynamic framework for the study of crystallization in polymers. ZAMP 53, 365–406 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Prasad S.C., Rao I.J., Rajagopal K.R.: A continuum model for the creep of single crystal nickel-base superalloys. Acta Mater. 53, 669–679 (2005)

    Article  Google Scholar 

  7. Rajagopal K.R., Srinivasa A.R.: Modeling anisotropic fluids within the framework of bodies with multiple natural configurations. J. Non-Newtonian Fluid Mech. 99, 109–124 (2001)

    Article  MATH  Google Scholar 

  8. Maxwell J.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)

    Article  Google Scholar 

  9. Kelvin L.: On the elasticity and viscosity of metals. Proc. R. Soc. 14, 289–297 (1865)

    Article  Google Scholar 

  10. Voigt W.: Ueber innere Reibung fester Körper, insbesondere der Metalle. Ann. Phys. 283, 671–693 (1892)

    Google Scholar 

  11. Burgers J.M.: Second Report on Viscosity and Plasticity, pp. 113–184. Nordeman, New York (1938)

    Google Scholar 

  12. Rao I.J., Rajagopal K.R.: On a new interpretation of the classical Maxwell model. Mech. Res. Commun. 34, 509–514 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karra S., Rajagopal K.R.: Development of three dimensional constitutive theories based on lower dimensional experimental data. Appl. Math. 54, 147–176 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rajagopal K.R., Srinivasa A.R.: A thermodynamic framework for rate type fluid models. J. Non-Newtonian Fluid Mech. 88, 207–227 (2000)

    Article  MATH  Google Scholar 

  15. Rajagopal K.R., Srinivasa A.R.: On thermomechanical restrictions of continua. Proc. R. Soc. Lond. Ser. A 460, 631–651 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rajagopal K.R., Srinivasa A.R.: On the thermodynamics of fluids defined by implicit constitutive equations. ZAMP 59, 715–729 (2007)

    Article  MathSciNet  Google Scholar 

  17. Ziegler H.: An Introduction to Thermodynamics. North-Holland Series in Applied Mathematics and Mechanics, 2nd edn. North-Holland, Amsterdam (1983)

    Google Scholar 

  18. Ziegler H., Wehrli C.: The derivation of constitutive equations from the free energy and the dissipation function. In: Wu, T.Y., Hutchinson, J.W. (eds) Advances in Applied Mechanics, vol. 25, pp. 183–238. Academic Press, New York (1987)

    Chapter  Google Scholar 

  19. Rajagopal K.R., Srinivasa A.R.: Mechanics of the inelastic behavior of materials: Part II-Inelastic response. Int. J. Plast. 14, 969–995 (1998)

    Article  MATH  Google Scholar 

  20. Onsager L.: Reciprocal relations in irreversible thermodynamics. I. Phys. Rev. 37, 405–426 (1931)

    MATH  Google Scholar 

  21. Glansdorff P., Prigogine I.: Thermodynamic Theory of Structure, Stability and Fluctuations. Wiley-Interscience, New York (1971)

    MATH  Google Scholar 

  22. Prigogine I.: Introduction to Thermodynamics of Irreversible Processes, 3rd edn. Interscience, New York (1967)

    Google Scholar 

  23. Oldroyd J.G.:: On the formulation of rheological equations of state. Proc. R. Soc. Lond. Ser. A (1934–1990) 200, 523–541 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  24. Srinivasa A.R.: Large deformation plasticity and the Poynting effect. Int. J. Plast. 17, 1189–1214 (2001)

    Article  MATH  Google Scholar 

  25. Kannan K.: A note on aging of a viscoelastic cylinder. Comput. Math. Appl. 53, 324–328 (2007)

    Article  MATH  Google Scholar 

  26. Wineman A.S., Rajagopal K.R.: Mechanical Response of Polymers: An Introduction. Cambridge University Press, London (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Rajagopal.

Additional information

Dedicated to Prof. J. D. Goddard

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karra, S., Rajagopal, K.R. A thermodynamic framework to develop rate-type models for fluids without instantaneous elasticity. Acta Mech 205, 105–119 (2009). https://doi.org/10.1007/s00707-009-0167-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-009-0167-2

Keywords

Navigation