Skip to main content
Log in

Continuum damage mechanics: combining thermodynamics with a thoughtful characterization of the microstructure

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

We formulate a macroscopic description of the mechanics of damaged materials. To represent the microstructure, the distribution of crack sizes is captured by way of the Minkowski functionals, or so-called quermass integrals, while a second-rank tensor is used to describe the average orientation of the cracks. A two phase-type approach is adopted to distinguish elastically strained material from unstrained regions in the wake of the cracks. Using nonequilibrium thermodynamic techniques, the driving force for the growth of the microcracks is naturally identified. In particular, Griffith’s law is generalized to assemblies of polydisperse crack sizes. Due to the detailed characterization of the microstructure, we are also able to account for the plastic zones at the rims of the cracks that are known to hamper the crack growth, and to discuss possible forms of the damage parameter. The presented approach separates in a transparent fashion the incorporation of fundamental thermodynamic and mechanic principles on one hand, from the specification of the material and details of the crack formation and growth on the other hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krajcinovic D. (1989) Damage mechanics. Mech. Mater. 8: 117–197

    Article  Google Scholar 

  2. Budiansky B., O’Connell R.J. (1976) Elastic moduli of a cracked solid. Int. J. Solids Struct. 12: 81–97

    Article  MATH  Google Scholar 

  3. Davison A.L., Stevens L. (1973) Thermomechanical constitution of spalling elastic bodies. J. Appl. Phys. 44: 668–674

    Article  Google Scholar 

  4. Krajcinovic D., Fonseka G.U. (1981) The continuous damage theory of brittle materials. Part 1: General theory. J. Appl. Mech. 48: 809–815

    MATH  Google Scholar 

  5. Kachanov M. (1980) Continuum model of medium with cracks. J. Eng. Mech. Div. ASCE 106(EM5): 1039–1051

    Google Scholar 

  6. Lemaitre J. (1984) How to use damage mechanics?. Nucl. Eng. Des. 80: 233–245

    Article  Google Scholar 

  7. Lemaitre J. (1985) A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Techn. (Trans. ASME) 107: 83–89

    Article  Google Scholar 

  8. Simo J.C., Ju J.W. (1987) Strain- and stress-based continuum damage models. 1. Formulation. Int. J. Solids Struct. 23: 821–840

    Article  MATH  Google Scholar 

  9. Truesdell C., Noll W. (1992) The Non-Linear Field Theories of Mechanics, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  10. Muschik W., Papenfuss C., Ehrentraut H. (2001) A sketch of continuum thermodynamics. J. Non-Newtonian Fluid Mech. 96: 255–290

    Article  MATH  Google Scholar 

  11. Baker G., de Borst R. (2005) An anisotropic thermomechanical damage model for concrete at transient elavated temperatures. Phil. Trans. R. Soc. A 363: 2603–2628

    Article  MATH  Google Scholar 

  12. Papenfuss C., Ván P., Muschik W. (2003) Mesoscopic theory of microcracks. Arch. Mech. 55: 459–477

    Google Scholar 

  13. Besseling, J.F., van der Giessen, E.: Mathematical modelling of inelastic deformation. In: Knobs, R.J., Morton, K.W. (eds.) Series: Applied Mathematics and Mathematical Computation, vol. 5, Chapman & Hall, London (1994)

  14. Wang C.C. (1970) A new representation theorem for isotropic functions: An answer to Professor G.F. Smith’s criticism of my paper on ‘Representations for isotropic functions. 1. Scalar-valued isotropic functions’. Arch. Rat. Mech. Anal. 36: 166–197

    Article  MATH  Google Scholar 

  15. Wang C.C. (1970) A new representation theorem for isotropic functions: An answer to Professor G.F. Smith’s criticism of my paper on ‘Representations for isotropic functions. 2. Vector-valued isotropic functions, symmetric tensor-valued isotropic functions, and skew-symmetric tensor-valued isotropic functions’. Arch. Rat. Mech. Anal. 36: 198–223

    MATH  Google Scholar 

  16. Spencer, A.J.M.: Part III. Theory of invariants, pp. 239–353. In: Eringen, A.C. (ed.) Continuum Physics, vol. 1. Mathematics Academic Press, New York (1971)

  17. Ju J.W. (1989) On energy-based coupled elastoplastic damage theories: Constitutive modeling and computational aspects. Int. J. Solids Struct. 25: 803–833

    Article  MATH  Google Scholar 

  18. Hansen N.R., Schreyer H.L. (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int. J. Solids Struct. 31: 359–389

    Article  MATH  Google Scholar 

  19. Bird R.B., Curtiss C.F., Armstrong R.C., Hassager O. (1987) Dynamics of Polymeric Liquids, vol. 2. Kinetic Theory, 2nd edn. Wiley, New York

    Google Scholar 

  20. Larson R.G. (1988) Constitutive Equations for Polymer Melts and Solutions. Butterworth Publishers, Stoneham

    Google Scholar 

  21. Grmela M., Öttinger H.C. (1997) Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56: 6620–6632

    Article  MathSciNet  Google Scholar 

  22. Öttinger H.C., Grmela M. (1997) Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism. Phys. Rev. E 56: 6633–6655

    Article  MathSciNet  Google Scholar 

  23. Öttinger H.C. (2005) Beyond Equilibrium Thermodynamics. Wiley, Hobroken

    Google Scholar 

  24. Hütter, M., Tervoort, T. A.: Finite anisotropic elasticity and material frame indifference from a nonequilibrium thermodynamics perspective. J. Non-Newtonian Fluid Mech. (special issue IWNET2006) 152, 45–52 (2008)

    Google Scholar 

  25. Hütter, M., Tervoort, T. A.: Thermodynamic considerations on nonisothermal finite anisotropic elasto-viscoplasticity. J. Non-Newtonian Fluid Mech. (special issue IWNET2006) 152, 53–65 (2008)

    Google Scholar 

  26. Anderson T.L. (1995) Fracture Mechanics: Fundamentals and Applications, 2nd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  27. Janssen M., Zuidema J., Wanhill R.J.H. (2002) Fracture Mechanics, 2nd edn. DUP Blue Print, Delft

    Google Scholar 

  28. Gdoutos E.E. (2005) Fracture Mechanics: An Introduction, 2nd edn. (Vol. 123 of Solid Mechanics and Its Applications). Springer, Dordrecht

    Google Scholar 

  29. Grmela M. (1997) Workshop report. J. Non-Newtonian Fluid. Mech. 69: 105–107

    Article  Google Scholar 

  30. Jongschaap R.J.J., Öttinger H.C. (2001) Workshop report. J. Non-Newtonian Fluid. Mech. 96: 1–3

    Article  Google Scholar 

  31. Edwards B.J., Öttinger H.C. (1997) Time–structure invariance criteria for closure approximations. Phys. Rev. E 56: 4097–4103

    Article  Google Scholar 

  32. Öttinger H.C. (2002) Modeling complex fluids with a tensor and a scalar as structural variables. Rev. Mex. Fis. 48(Suppl.1): 220–229

    Google Scholar 

  33. Hütter M., Rutledge G.C., Armstrong R.C. (2005) Crystal shapes and crystallization in continuum modeling. Phys. Fluids 17: 014107

    Article  Google Scholar 

  34. Hadwiger H. (1957) Vorlesungen über Inhalt, Oberfläche und Isoperimetrie. Springer, Heidelberg

    MATH  Google Scholar 

  35. Santalò L.A. (1976) Integral Geometry and Geometric Probability. Addison-Wesley, Reading

    MATH  Google Scholar 

  36. Schneider R. (1993) Convex Bodies: The Brunn–Minkowski Theory. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  37. Weil, W.: Stereology: a survey for geometers. In: Gruber, P.M., Wills, J.M. (eds.) Convexity and Its Applications, pp. 360–412. Birkhäuser, Basel (1983)

  38. Mecke K.R. (1998) Integral geometry in statistical physics. Int. J. Mod. Phys. B 12: 861–899

    Article  MathSciNet  Google Scholar 

  39. Mecke, K.R.: Additivity, convexity, and beyond: Applications of Minkowski functionals in statistical physics. In: Mecke, K.R., Stoyan, D. (eds.) Statistical Physics and Spatial Statistics: The Art of Analyzing and Modeling Spatial Structures and Pattern Formation. Vol. 554 of Lecture Notes in Physics, pp. 111–184. Springer, Berlin (2000)

  40. Mecke K.R., Buchert T., Wagner H. (1994) Robust morphological measures for large-scale structure in the universe. Astron. Astrophys. 288: 697–704

    Google Scholar 

  41. Kerscher M., Mecke K.R., Schuecker P., Böhringer H., Guzzo L., Collins C.A., Schindler S., De Grandi S., Cruddace R. (2001) Non-Gaussian morphology on large scales: Minkowski functionals of the REFLEX cluster catalogue. Astron. Astrophys. 377: 1–16

    Article  Google Scholar 

  42. Hütter M. (2003) Heterogeneity of colloidal particle networks analyzed by means of Minkowski functionals. Phys. Rev. E 68: 031404

    Article  MathSciNet  Google Scholar 

  43. Schneider W., Köppl A., Berger J. (1988) Non-isothermal crystallization of polymers. Part 1. System of rate equations. Int. Polym Process 3: 151–154

    Google Scholar 

  44. Schneider, W., Berger, J., Köppl, A.: Non-isothermal crystallization of polymers: Application of rate equations. In: Güçeri, S.I. (ed.) Proceedings of the 1st International Conference Transport Phenomena in Processing, pp. 1043–1054. Technomic Publ. Co., Lancaster (1992)

  45. Eder G., Janeschitz-Kriegl H., Liedauer S. (1990) Crystallization processes in quiescent and moving polymer melts under heat transfer conditions. Prog. Polym. Sci. 15: 629–714

    Article  Google Scholar 

  46. Eder, G., Janeschitz-Kriegl, H.: Crystallization. In: Meijer, H.E.H. (ed.) Processing of Polymers, vol. 18 of Material Science and Technology, pp. 269–342. Wiley, Weinheim (1997)

  47. Zuidema, H.: Flow induced crystallization of polymers. Eindhoven University of Technology, Ph.D. thesis. Eindhoven, The Netherlands (2000)

  48. Zuidema H., Peters G.W.M., Meijer H.E.H. (2001) Development and validation of a recoverable strain-based model for flow-induced crystallization of polymers. Macromol. Theor. Simul. 10: 447–460

    Article  Google Scholar 

  49. Hütter M. (2001) Thermodynamically consistent incorporation of the Schneider rate equations into two-phase models. Phys. Rev. E 64: 011209

    Article  Google Scholar 

  50. Hütter M. (2003) Solidification in closed systems: Cluster size distribution and its driving force. Multiscale Model. Sim. 1: 371–390

    Article  MATH  Google Scholar 

  51. Ván P., Papenfuss C., Muschik W. (2000) Mesoscopic dynamics of microcracks. Phys. Rev. E 62: 6206–6215

    Article  Google Scholar 

  52. Ván P., Papenfuss C., Muschik W. (2004) Griffith cracks in the mesoscopic microcrack theory. J. Phys. A Math. Gen. 37: 5315–5328

    Article  MATH  Google Scholar 

  53. Papenfuss C., Böhme T., Herrmann H., Muschik W., Verhás J. (2007) Dynamics of the size and orientation distribution of microcracks and evolution of macroscopic damage parameters. J. Non-Equil. Thermodyn. 32: 129–142

    Article  MATH  Google Scholar 

  54. Beris A.N., Edwards B.J. (1994) Thermodynamics of Flowing Systems with Internal Microstructure. Oxford University Press, Oxford

    Google Scholar 

  55. Larson R.G. (1999) The Structure and Rheology of Complex Fluids. Oxford University Press, New York

    Google Scholar 

  56. Hinch E.J., Leal L.G. (1976) Constitutive equations in suspension mechanics. Part 2. Approximate forms for a suspension of rigid particles affected by Brownian rotations. J. Fluid. Mech. 76: 187–208

    Article  MATH  Google Scholar 

  57. Kröger M. (2005) Models for Polymeric and Anisotropic Liquids. Lecture Notes in Physics, Vol. 675. Springer, Berlin

    Google Scholar 

  58. Kröger M., Ammar A., Chinesta F. (2008) Consistent closure schemes for statistical models of anisotropic fluids. J. Non-Newtonian Fluid Mech. 149: 40–55

    Article  MATH  Google Scholar 

  59. Rice, J.R.: Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms. In: Argon, A.S. (ed.) Constitutive Equations in Plasticity, pp. 23–79. MIT Press, Cambridge (1975)

  60. Rice J.R. (1978) Thermodynamics of the quasi-static growth of Griffith cracks. J. Mech. Phys. Solids 26: 61–78

    Article  MATH  Google Scholar 

  61. Irwin G.R. (1957) Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24: 361–364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hütter.

Additional information

Dedicated to Professor Wilhelm Schneider on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hütter, M., Tervoort, T.A. Continuum damage mechanics: combining thermodynamics with a thoughtful characterization of the microstructure. Acta Mech 201, 297–312 (2008). https://doi.org/10.1007/s00707-008-0064-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0064-0

Keywords

Navigation