Skip to main content
Log in

Viscoelastic response of thin membranes with application to red blood cells

  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The rate-type constitutive analysis of viscoelastic response of thin membranes, which includes an instantaneous elastic response and viscous behavior in both shear and dilatation, is developed with the aim to study the mechanical response of red blood cells. A convenient set of generalized stress and strain variables is introduced, which facilitates the derivation and integration of the governing differential equations. Gradual or sudden loading and stepwise unloading histories are considered. The performed parametric study of the mechanical response illustrates the effects of the introduced material parameters on the coefficient of viscoelastic lateral contraction and the overall membrane deformation. A closed form solution to the problem of radial stretching of a viscoelastic hollow circular membrane is derived without referral to the correspondence principle, which is of interest for the micropipette aspiration experiment of the red blood cell. The effects of the material parameters on the instantaneous elastic response and the subsequent rate of creep are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans E.A., Skalak R.: Mechanics and Thermodynamics of Biomembranes. CRC Press, Boca Raton (1980)

    Google Scholar 

  2. Hochmuth R.M., Waugh R.E.: Erythrocyte membrane elasticity and viscosity. Ann. Rev. Physiol. 49, 209–219 (1987)

    Article  Google Scholar 

  3. Fung Y.C.: Biomechanics: Mechanical Properties of Living Tissues. Springer, New York (1993)

    Google Scholar 

  4. Luisi, P.L., Walde, P. (eds.): Giant Vesicles. Wiley, New York (2000)

    Google Scholar 

  5. Boal D.: Mechanics of the Cell. Cambridge University Press, New York (2002)

    Google Scholar 

  6. Pozrikidis, C. (ed.): Modeling and Simulation of Capsules and Biological Cells. Chapman & Hall/CRC, London/Boca Raton (2003)

    MATH  Google Scholar 

  7. Suresh S.: Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships. J. Mater. Res. 21, 1871–1877 (2006)

    Article  MathSciNet  Google Scholar 

  8. Evans E.A.: New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. Biophys. J. 13, 941–954 (1973)

    Google Scholar 

  9. Christensen R.M.: Theory of Viscoelasticity: An Introduction. Academic Press, New York (1971)

    Google Scholar 

  10. Drozdov A.D.: Viscoelastic Structures: Mechanics of Growth and Aging. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  11. Wineman A., Rajagopal K.R.: Mechanical Response of Polymers. Cambridge University Press, London (2000)

    Google Scholar 

  12. Glasser, W.G., Hatakeyama, H. (eds.): Viscoelasticity of Biomaterials. American Chemical Society,Washington DC (1992)

    Google Scholar 

  13. Lubarda V.A., Benson D.J., Meyers M.A.: Strain-rate effects in rheological models of inelastic response. Int. J. Plast. 19, 1097–1118 (2003)

    Article  MATH  Google Scholar 

  14. Evans E.A., Hochmuth R.M.: Membrane viscoelasticity. Biophys. J. 16, 1–11 (1976)

    Google Scholar 

  15. Chien S., Sung K.L.P., Skalak R., Usami S., Tozeren A.: Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane. Biophys. J. 24, 463–487 (1978)

    Google Scholar 

  16. Engelhardt H., Sackmann E.: On the measurement of shear elastic-moduli and viscosities of erythrocyte plasma-membranes by transient deformation in high-frequency electric-fields. Biophys. J. 54, 495–508 (1988)

    Google Scholar 

  17. Lenormand G., Hénon S., Richert A., Siméon J., Gallet F.: Direct measurement of the area expansion and shear moduli of the human red blood cell membrane skeleton. Biophys. J. 81, 43–56 (2001)

    Google Scholar 

  18. Dao M., Lim C.T., Suresh S.: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259–2280 (2003)

    Article  Google Scholar 

  19. Shames I.H., Cozzarelli F.A.: Elastic and Inelastic Stress Analysis. Prentice Hall, Englewood Cliffs (1992)

    Google Scholar 

  20. Skalak R., Tozeren A., Zarda R.P., Chien S.: Strain energy function of red blood-cell membranes. Biophys. J. 13, 245–280 (1973)

    Article  Google Scholar 

  21. Lim, C.T., Dao, M., Suresh, S., Sow, C.H., Chew, K.T.: Large deformation stretching of living cells using laser traps. Acta Mater. 52, 1837–1845 (2004) (with Corrigendum: 4065–4066)

    Google Scholar 

  22. Mills J.P., Qie L., Dao M., Lim C.T., Suresh S.: Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech. Chem. Biosyst. 1, 169–180 (2004)

    Google Scholar 

  23. Wineman A.: Large axially symmetric stretching of a nonlinear viscoelastic membrane. Int. J. Solids Struct. 8, 775–790 (1972)

    Article  MATH  Google Scholar 

  24. Green A.E., Adkins J.E.: Large Elastic Deformations. Oxford University Press, New York (1970)

    MATH  Google Scholar 

  25. Helfrich W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. 28C, 693–703 (1973)

    Google Scholar 

  26. Helfrich W.: Bending elasticity of fluid membranes. In: Luisi, P.L., Walde, P.(eds) Giant Vesicles, chap. 6, Wiley, New York (2000)

    Google Scholar 

  27. Steigmann D.J.: Fluid films with curvature elasticity. Arch. Rat. Mech. Anal. 150, 127–152 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Krajcinovic D., Lubarda V., Sumarac D.: Fundamental aspects of brittle cooperative phenomena—effective continua models. Mech. Mater. 15, 99–115 (1993)

    Article  Google Scholar 

  29. Lubarda V.A.: An analysis of large-strain damage elastoplasticity. Int. J. Solids Struct. 31, 2951–2964 (1994)

    Article  MATH  Google Scholar 

  30. Vaziri A., Mofrad R.K.: Mechanics and deformation of the nucleus in micropipette aspiration experiment. J. Biomech. 40, 2053–2062 (2007)

    Article  Google Scholar 

  31. Qian D., Wagner G.J., Liu W.K., Yu M.-F., Ruoff R.S.: Mechanics of carbon nanotubes. Appl. Mech. Rev. 55, 495–533 (2002)

    Article  Google Scholar 

  32. Wineman A.: Nonlinear viscoelastic membranes. Comput. Math. Appl. 53, 168–181 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  33. Asaro R.J., Lubarda V.A.: Mechanics of Solids and Materials. Cambridge University Press, Cambridge (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Lubarda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lubarda, V.A., Marzani, A. Viscoelastic response of thin membranes with application to red blood cells. Acta Mech 202, 1–16 (2009). https://doi.org/10.1007/s00707-008-0005-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-008-0005-y

Keywords

Navigation