Skip to main content
Log in

Steam explosion and steam extrusion pretreatment as auxiliary methods for concentration enhancement of monosaccharides from hydrolysates based on the selected lignocellulosic materials

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

An important parameter of production of biofuels based on lignocellulosic materials is the accessibility of cellulose in the structure of the pretreated substrate. Therefore, the suitable pretreatment methods should be used to process the lignocellulosic materials. Steam explosion and steam extrusion are promising pretreatment methods that are potentially useful in biofuel chemistry or green chemistry based on renewable resources. These physico-chemical methods modify lignocellulosic materials with recalcitrant nature. Thereby the accessibility of cellulose to enzymes and the subsequent enzymatic decomposition are improved. Pilot experiments of enzymatic hydrolysis of beech wood particles pretreated by steam explosion (STEX) or alkaline extrusion (ALEXT) were performed. The most significant differences in case of ALEXT were when comparing the concentration of monosaccharides in the hydrolysates of samples without pretreatment and samples pretreated by ALEXT at 200 °C. The highest concentration of total monosaccharides for extrusion was reached at the level of 57 g dm−3 (enzymatic hydrolysis for 24 h). The average concentration of glucose and xylose in this case reached the level of 36 g dm−3 or 18 g dm−3, in comparison to the original beech substrate—13 g dm−3 or 4 g dm−3, respectively. FT-IR spectra and microscopic images of some solid materials based on beech were obtained and compared for a better understanding of the changes in their structure.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stankovská M, Fišerová M, Gigac J, Pažitný A (2018) Cellulose Chem Technol 52:815

    Google Scholar 

  2. Clark JH, Luque R, Matharu AS (2012) Annu Rev Chem Biomol Eng 3:183

    Article  CAS  PubMed  Google Scholar 

  3. Jørgensen H, Kristensen JB, Felby C (2007) Biofuels. Bioprod Bioref 1:119

    Article  Google Scholar 

  4. Hazuchová M, Chmelová D, Ondrejovič M (2017) Nova Biotechnol Chim 16:113

    Article  Google Scholar 

  5. Pažitný A, Russ A, Boháček Š, Šutý Š, Ihnát V (2020) Nova Biotechnol Chim 19:89

    Article  Google Scholar 

  6. Zabed HM, Akter S, Yun J, Zhang G, Awad FN, Qi X, Sahu JN (2019) Renew Sust Energ Rev 105:105

    Article  CAS  Google Scholar 

  7. Anu KA, Rapoport A, Kunze G, Kumar S, Singh D, Singh B (2020) Renew Energ 160:1228

    Article  CAS  Google Scholar 

  8. Tsafrakidou P, Bekatorou A, Koutinas AA, Kordulis C, Banat IM, Petsi T, Sotiriou M (2018) Energy Convers Manag 160:509

    Article  CAS  Google Scholar 

  9. Alam A, Wang Y, Liu F, Kang H, Tang S, Wang Y, Cai Q, Wang H, Peng H, Li Q, Zeng Y, Tu Y, Xia T, Peng L (2020) Renew Energ 159:1128

    Article  CAS  Google Scholar 

  10. Bokhari SMQ, Chi K, Catchmark JM (2021) Crops Prod 171:113818

    Article  CAS  Google Scholar 

  11. Pažitný A (2019) Acta Chim Slovaca 12:185

    Article  Google Scholar 

  12. Gonzalez R, Jameel H, Chang H, Treasure T, Pirraglia A, Saloni D (2011) BioResources 6:1599

    CAS  Google Scholar 

  13. Smichi N, Messaoudi Y, Allaf K, Gargouri M (2020) Bioprocess Biosyst Eng 43:945

    Article  CAS  PubMed  Google Scholar 

  14. Osman AI, Hefny M, Maksoud MIAA, Elgarahy AM, Rooney DW (2021) Environ Chem Lett 19:797

    Article  CAS  Google Scholar 

  15. Sandberg D, Haller P, Navi P (2013) Wood Mater Sci Eng 8:64

    Article  CAS  Google Scholar 

  16. Larsson S, Palmqvist E, Hahn-Hägerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO (1999) Enzyme Microb Technol 24:151

    Article  CAS  Google Scholar 

  17. Kumar R, Wyman CE (2008) Carbohydr Res 343:290

    Article  CAS  PubMed  Google Scholar 

  18. Kumar R, Wyman CE (2009) Biotechnol Prog 25:302

    Article  CAS  PubMed  Google Scholar 

  19. Weil JR, Dien B, Bothast R, Hendrickson R, Mosier NS, Ladisch MR (2002) Ind Eng Chem Res 41:6132

    Article  CAS  Google Scholar 

  20. Xiong J, Hassan M, Wang W, Ding W (2020) Renew Energy 145:116

    Article  CAS  Google Scholar 

  21. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Bioresource Technol 96:1959

    Article  CAS  Google Scholar 

  22. Pažitný A, Russ A, Boháček Š, Stankovská M, Šutý Š (2019) Wood Res 64:13

    Google Scholar 

  23. Jiang ST, Guo N (2016) Energy Sources A: Recover Util Environ Eff 38:295

    Article  CAS  Google Scholar 

  24. Grous WR, Converse AO, Grethlein HE (1986) Enzyme Microb Technol 8:274

    Article  CAS  Google Scholar 

  25. Pažitný A, Russ A, Boháček Š, Stankovská M, Ihnát V, Šutý Š (2019) Wood Res 64:437

    Google Scholar 

  26. Damay J, Duret X, Ghislain T, Lalonde O, Lavoie JM (2018) Ind Crops Prod 111:482

    Article  CAS  Google Scholar 

  27. Elliston A, Wilson DR, Wellner N, Collins SRA, Roberts IN, Waldron KW (2015) Bioresource Technol 187:136

    Article  CAS  Google Scholar 

  28. Ballesteros I, Oliva JM, Navarro AA, González A, Carrasco J, Ballesteros M (2000) Appl Biochem Biotechnol 84:97

    Article  PubMed  Google Scholar 

  29. Gigac J, Fišerová M, Stankovská M, Pažitný A (2017) Wood Res 62:919

    CAS  Google Scholar 

  30. Liu C, Heide EVD, Wang H, Li B, Yu G, Mu X (2013) Biotechnol Biofuels 6:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Whistler RL, Smart CL (1953) J Am Chem Soc 75:1916

    Article  CAS  Google Scholar 

  32. Sandhu DK, Kalra MK (1985) Trans Brit Mycol Soc 84:251

    Article  CAS  Google Scholar 

  33. Kuba Y, Kashiwagi Y, Okada G, Sasaki T (1990) Enzyme Microb Technol 12:72

    Article  CAS  Google Scholar 

  34. Lu H, Yadav V, Zhong M, Bilal M, Taherzadeh MJ, Iqbal HMN (2022) Chemosphere 288:132528

    Article  CAS  PubMed  Google Scholar 

  35. Andlar M, Rezić T, Marđetko N, Kracher D, Ludwig R, Šantek B (2018) Eng Life Sci 18:768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brazil OAV, Vilanova-Neta JL, Silva NO, Vieira IMM, Lima ÁS, Ruzene DS, Silva DP, Figueiredo RT (2019) J Clean Prod 221:430

    Article  CAS  Google Scholar 

  37. Pažitný A, Boháček Š, Russ A (2011) Wood Res 56:533

    Google Scholar 

  38. Sánchez JM, Jiménez JAP, Villanueva MJD, Serrano A, Núñez N, Giménez JL (2015) Renew Energy 78:566

    Article  Google Scholar 

  39. Ghahfarrokhi MT, Zeinali S, Bagheri H (2021) J Chromatogr A 1643:462081

    Article  Google Scholar 

  40. Russ A, Fišerová M, Letko M, Opálená E (2016) Wood Res 61:65

    CAS  Google Scholar 

  41. Balberčák J, Boháček Š, Pažitný A, Ihnát V, Lübke H (2018) Wood Res 63:35

    Google Scholar 

  42. Demčák Š, Bálintová M, Demčáková M, Zinicovscaia I, Yushin N, Frontasyeva MV (2019) Nova Biotechnol Chim 18:66

    Article  Google Scholar 

  43. Ibrahim Q, Arauzo PJ, Kruse A (2020) Renew Energy 153:1479

    Article  CAS  Google Scholar 

  44. Abidi N, Cabrales L, Haigler CH (2014) Carbohydr Polym 100:9

    Article  CAS  PubMed  Google Scholar 

  45. Pandey KK (1999) J Appl Polym Sci 71:1969

    Article  CAS  Google Scholar 

  46. Hergert HL (1971) Infrared spectra. In: Sarkanen KW, Ludwig CH (eds) Lignins: occurrence, formation, structure and reactions. Wiley, New York, p 267

    Google Scholar 

  47. Schwanninger M, Rodrigues JC, Pereira H, Hinterstoisser B (2004) Vib Spectrosc 36:23

    Article  CAS  Google Scholar 

  48. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Technical Report NREL/TP-510-42618. National Renewable Energy Laboratory (NREL), Golden, CO, USA

Download references

Funding

This work was supported by the Slovak Research and Development Agency under the Contract no. APVV-18-0240.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrej Pažitný.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pažitný, A., Halaj, M., Russ, A. et al. Steam explosion and steam extrusion pretreatment as auxiliary methods for concentration enhancement of monosaccharides from hydrolysates based on the selected lignocellulosic materials. Monatsh Chem 153, 1077–1085 (2022). https://doi.org/10.1007/s00706-022-02925-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02925-9

Keywords

Navigation