Skip to main content
Log in

Deproteinized natural rubber latex/gelatinized starch blended films as drug delivery carrier

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Deproteinized natural rubber (DNR) latex was blended to each of gelatinized potato, rice, and glutinous starch (GPS, GRS, and GGS, respectively) dispersions to construct a thin film with glycerin added as plasticizer. The appropriate blended films were selected to load lidocaine and used as drug delivery. It was found that dispersions of each gelatinized starch type provided different viscosities due to their amylose/amylopectin ratios. GRS dispersion could be blended with DNR latex up to 20 part per hundred of rubber (phr) because of its lowest viscosity. All gelatinized starch dispersions could be mixed with DNR latex to provide good film at the concentration of 5 phr. The percentage of moisture uptake and swelling ratio of these films increased causing the blending of gelatinized starch in DNR. The higher amounts of gelatinized starch increased the swelling ratio and volumetric swelling of blended film. The ultimate tensile strengths of these blended films were not different comparing to DNR film itself, but they had a tendency to raise up when the amounts of gelatinized starch increased. At 5 phr of gelatinized starch, GPS provided the highest percentage of elongation at break of blended film while GGS and GRS gave the lower values, respectively. Lidocaine could be mixed in DNR and 5 phr GRS blended films by simple mixing during film preparation process. The compatibility of these blended films was confirmed by their morphology, fourier transform infrared spectroscopy and differential scanning calorimeter. Amorphous pattern of drug in these films was detected by X-ray diffraction. Lidocaine release profile from this film showed the slow release for up to 90% in 12 h.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferreira M, Mendonca RJ, Coutinho-Netto J, Mulato M (2009) Braz J Phys 39:564

    Article  CAS  Google Scholar 

  2. Linos A, Berekaa MM, Reichelt R, Keller U, Schmitt J, Flemming HC, Kroppenstedt RM, Steinbuchel A (2000) Appl Environ Microbiol 66:1639

    Article  CAS  Google Scholar 

  3. Riyajan S, Sasithornsonti Y, Phinyocheep P (2012) Carbohydr Polym 89:251

    Article  CAS  Google Scholar 

  4. Aielo PB, Borges FA, Romeira KM, Miranda MCR, Arruda LB, Filho PNL, Drago BC, Herculano RD (2014) Mat Res 17:146

    Article  CAS  Google Scholar 

  5. Berges FA, Tercco A, Barros NR, Miranda MCR, Pierri EG, Santos AG, Herculano RD (2014) Eur J Med Plants 4:1420

    Article  Google Scholar 

  6. Herculano RD, Silva CP, Ereno C, Guimaraes SAC, Kinoshita A, Graeff CF (2009) Mat Res 12:253

    Article  CAS  Google Scholar 

  7. Panrat K, Boonme P, Taweepreda W, Pichayakorn W (2013) Adv Mat Res 747:91

    CAS  Google Scholar 

  8. Pichayakorn W, Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC (2012) Ind Eng Chem Res 51:13393

    Article  CAS  Google Scholar 

  9. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC (2012) J Membr Sci 411:81

    Article  Google Scholar 

  10. Deval R, Ramesh V, Prasad G, Jain AK (2008) Indian J Dermatol Venereol Leprol 74:304

    Article  Google Scholar 

  11. Sussman GL, Beezhold DH, Kurup VP (2002) J Allergy Clin Immunol 110:33

    Article  Google Scholar 

  12. Yeang HY, Arif SAM, Yusof F, Sunderasan E (2002) Methods 27:32

    Article  CAS  Google Scholar 

  13. Gray M, Bohacek L, Weir D, Zdanuk J (2007) J Wound Ostomy Cont Nurs 34:134

    Article  Google Scholar 

  14. Afiq MM, Azura AR (2013) Int Biodeter Biodegr 85:139

    Article  CAS  Google Scholar 

  15. Khalaf AI, Sadek EM (2011) J Appl Polym Sci 125:959

    Article  Google Scholar 

  16. Ichazo MN, Albano C, Hernandez M, Gonzalez J, Pena J (2010) Rev Latin Am Metal Mat 31:71

    Google Scholar 

  17. Mele P, Coussy HA, Boisse SM, Dufresne A (2011) Biomacromol 12:1487

    Article  CAS  Google Scholar 

  18. Rajisha KR, Maria HJ, Pothan LA, Ahmad Z, Thomas S (2014) Int J Biol Macromol 67:147

    Article  CAS  Google Scholar 

  19. Waiprib R, Pichayakorn W, Boonme P, Taweepreda W, Suksaeree J (2015) Key Eng Mater 659:45

    Article  Google Scholar 

  20. Pathan IB, Setty CM (2009) Trop J Pharm Res 8:173

    Article  CAS  Google Scholar 

  21. Williams AC, Barry BW (2004) Adv Drug Deliv Rev 56:603

    Article  CAS  Google Scholar 

  22. Pichayakorn W, Suksaeree J, Boonme P, Amnuaikit T, Taweepreda W, Ritthidej GC (2012) Ind Eng Chem Res 51:8442

    Article  CAS  Google Scholar 

  23. Suksaeree J, Boonme P, Taweepreda W, Ritthidej GC, Pichayakorn W (2012) Chem Eng Res Des 90:906

    Article  CAS  Google Scholar 

  24. Zhaoan C, Maicun D, Yong C, Gaohong H, Mimg W, Junde W (2004) J Membr Sci 235:73

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Prince of Songkla University for financial and laboratory support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wiwat Pichayakorn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waiprib, R., Boonme, P., Taweepreda, W. et al. Deproteinized natural rubber latex/gelatinized starch blended films as drug delivery carrier. Monatsh Chem 148, 1223–1228 (2017). https://doi.org/10.1007/s00706-017-2005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-017-2005-x

Keywords

Navigation