Skip to main content
Log in

Bilirubin photo-isomers: regiospecific acyl glucuronidation in vivo

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

(4Z,15Z)-Bilirubin-IXα, the end product of heme catabolism, requires uridine glucuronosyl transferase 1A1 (UGT1A1)-catalyzed glucuronidation for elimination in bile, where it appears as two isomeric monoglucuronides and a diglucuronide. When people are exposed to light, endogenous bilirubin is converted partly to photo-isomers that are produced in greater abundance during treatment of jaundiced babies with phototherapy. Little is known about the metabolism of the photo-isomers, other than that they appear not to require glucuronidation for elimination in bile. Studies have been hampered by their unavailability and instability, as well as confusion about the identity, structures, preparation, and purity of bilirubin photoproducts. This paper outlines methods for preparing photo-isomers of bilirubins in sufficient quantity and purity for metabolic studies in rats and reappraises the composition of some previous preparations. The studies show that (Z,E)-isomers of bilirubins and the structural isomer (Z)-lumirubin undergo glucuronidation in the rat, but unlike (4Z,15Z)-bilirubin, form only monoglucuronides. Moreover, glucuronidation is regiospecific for just one of the two propionic acid groups, the one attached to the isomerized half of the molecule. This unusual stereoselectivity appears to be dictated by intramolecular hydrogen bonding. Formation of hydroxylated bilirubins was not detected. During phototherapy, photo-isomers will compete with endogenous (4Z,15Z)-bilirubin for glucuronidation by nascent hepatic enzyme UGT1A1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. Lumirubin can be partially reconverted back to (4Z,15Z)-BR on irradiation with UV light or prolonged irradiation with blue light [13, 26], but its formation is irreversible on the time scale required to effect complete equilibration of (Z)-lumirubin and (E)-lumirubin. Thus, irradiation of (Z)-lumirubin with blue light leads rapidly to a photoequilibrium mixture of (Z)- and (E)-isomers, but not to a photoequilibrium mixture with (4Z,15Z)-BR which appears only along with overall pigment decomposition (McDonagh AF, unpublished observations). Therefore on the time scales of configurational isomerization and structural isomerization it is not inappropriate to describe lumirubin formation as irreversible.

  2. The nomenclature and identification of BR photoisomers in the literature is confusing. The photoisomer structures shown in Figs. 1 and 2 were established unambiguously by NMR and other spectroscopic and chemical methods published in 1982 and, for simplicity, the trivial name “lumirubin” (CAN 83664-21-5 and 83729-98-0) was assigned to structural isomers with the novel cycloheptadienyl ring (Fig. 2) [7, 8]. Previously the term “photobilirubin” had been used to describe early photoproducts of BR [22], but that term became redundant once the individual photoisomer chemical structures had been established. Yet the term was not completely abandoned, appearing in the literature as photobilirubins IA and IB, photoproducts isolated by Stoll et al. who thought them to be (4E,15Z) and (4Z,15E)-BR, respectively [13, 14]. However, as shown in this paper those structure assignments are incorrect. Another photoproduct, photobilirubin II, initially thought to contain two stable atropisomers of (4E,15E)-BR [13, 14] was subsequently assigned either the lumirubin structure (Fig. 2) or spiro-lactone structure (Fig. 3) [23], and finally the lumirubin structure [24]. The lumirubin structure in Fig. 2 is sometimes called (E,Z)-cyclobilirubin. Cyclobilirubin, originally called “unknown pigment”, was initially assigned the (4E,15E)-bilirubin structure [25], then the spiro-lactone structure [26], and eventually, in 1984 [27], the lumirubin structure elucidated earlier [7]. The name is confusing because it implies that a (Z,Z)-cyclobilirubin isomer could exist; however, such a structure is stereochemically impossible. In 1987, Bonnett and Ioannou published a table of structure/name correlations for the photoproducts isolated by different investigators [28]. Unfortunately, there are errors in that table. Adding further confusion, structures for several photoisomers and for bilirubin glucuronides depicted in a more recent review [29] are incorrect. The current paper uses unambiguous chemical nomenclature for configurational isomers and the trivial name lumirubin for isomers with a cycloheptadienyl ring system linking two adjacent pyrrolic rings formed by intramolecular cyclization of an endo vinyl group. There is no longer a need for the ambiguous and confusing photobilirubin or cyclobilirubin nomenclature.

  3. (P) = plus, (M) = minus define the helical sense of the molecular conformation and thus the chirality of the molecule, with reference to the relative orientation of the component two dipyrrinone chromophores and their long wavelength electric transition dipole moments lying along the long axis of each dipyrrinone [34].

  4. (Z)-Lumirubin has two stereogenic centers, denoted by *in Fig. 2. Prepared by irradiation of BR-HSA, (Z)-lumirubin is not identical to (Z)-lumirubin prepared by irradiation of BR in CHCl3/Et3N. Because of chiral induction by the protein the former is chiral and optically active whereas the latter is a racemate and optically inactive [49]. Both preparations behaved identically in the in vivo studies and are not distinguished in this paper.

References

  1. Ikushiro S (2010) Drug Metab Rev 42:13

    Article  Google Scholar 

  2. Chowdhury R, Chowdhury NR, Gartner U, Wolkoff AW, Arias IM (1982) J Clin Invest 69:595

    Article  CAS  Google Scholar 

  3. Hanchard NA, Skierka J, Weaver A, Karon BS, Matern D, Cook W, O’Kane DJ (2011) BMC Med Genet 12:57

    Article  CAS  Google Scholar 

  4. Miyagi SJ, Collier AC (2011) Drug Metab Disp 39:912

    Article  CAS  Google Scholar 

  5. Maisels MJ, McDonagh AF (2008) New Engl J Med 358:920

    Article  CAS  Google Scholar 

  6. McDonagh AF (1986) N Engl J Med 314:121

    Article  CAS  Google Scholar 

  7. McDonagh AF, Palma LA, Lightner DA (1982) J Am Chem Soc 104:6867

    Article  CAS  Google Scholar 

  8. McDonagh AF, Palma LA, Trull FR, Lightner DA (1982) J Am Chem Soc 104:6865

    Article  CAS  Google Scholar 

  9. Agati G, Fusi F, Pratesi R, McDonagh A (1992) Photochem Photobiol 55:185

    Article  CAS  Google Scholar 

  10. Kanna Y, Arai T, Sakuragi H, Tokumam K (1990) Chem Lett 631

  11. Kanna Y, Arai T, Tokumaru K (1993) Bull Chem Soc Jpn 66:1482

    Article  CAS  Google Scholar 

  12. McDonagh AF, Agati G, Fusi F, Pratesi R (1989) Photochem Photobiol 50:305

    Article  CAS  Google Scholar 

  13. Stoll MS, Zenone EA, Ostrow JD, Zarembo JE (1979) Biochem J 183:139

    CAS  Google Scholar 

  14. Cohen AN, Ostrow JD (1980) Pediatrics 6:740

    Google Scholar 

  15. Hansen TWR (2010) Sem Perinatol 34:231

    Article  Google Scholar 

  16. McDonagh AF, Palma LA, Lightner DA (1980) Science 208:145

    Article  CAS  Google Scholar 

  17. Mreihil K, McDonagh AF, Nakstad B, Hansen TR (2010) Pediat Res 67:656

    Article  CAS  Google Scholar 

  18. Berry CS, Zarembo JE, Ostrow JD (1972) Biochem Biophys Res Comm 49:1366

    Article  CAS  Google Scholar 

  19. Cohen AN, Kapitulnik J, Ostrow JD, Webster CC (1986) Hepatology 6:490

    Article  CAS  Google Scholar 

  20. Ostrow JD (1972) Prog Liver Dis 4:447

    CAS  Google Scholar 

  21. Ostrow JD, Kapitulnik J (1986) Alternate pathways of heme and bilirubin metabolism. In: Ostrow JD (ed) Bile pigments and jaundice. Marcel Dekker, New York, p 421

    Google Scholar 

  22. Lightner DA, Wooldridge TA, McDonagh AF (1979) Proc Natl Acad Sci U S A 76:9

    Article  Google Scholar 

  23. Stoll M, Vicker N, Gray CH, Bonnett R (1982) Biochem J 201:179

    CAS  Google Scholar 

  24. Bonnett R, Buckley D, Hamzetash D, Hawkes G, Ioannou S, Stoll M (1984) Biochem J 219:1053

    CAS  Google Scholar 

  25. Isobe K, Onishi S (1981) Biochem J 193:1029

    CAS  Google Scholar 

  26. Onishi S, Itoh S, Isobe K, Sugiyama S (1981) Photomed Photobiol 3:59

    Google Scholar 

  27. Onishi S, Miura I, Isobe K, Itoh S, Ogino T, Yokoyama T, Yamakawa T (1984) Biochem J 218:667

    CAS  Google Scholar 

  28. Bonnett R, Ioannou S (1987) Mol Aspects Med 9:457

    Article  CAS  Google Scholar 

  29. Vitek L, Ostrow JD (2009) Curr Pharm Design 15:2869

    Article  CAS  Google Scholar 

  30. Stoll M, Zenone E, Ostrow J (1981) J Clin Invest 68:134

    Article  CAS  Google Scholar 

  31. Cheng L, Lightner D (1999) Photochem Photobiol 70:941

    Article  CAS  Google Scholar 

  32. Manitto P, Monti D (1976) J Chem Soc Chem Commun 1976:122

    Article  Google Scholar 

  33. Navon G, Frank S, Kaplan D (1984) J Chem Soc Perkin Trans 2:1145

    Article  Google Scholar 

  34. Person R, Peterson BR, Lightner DA (1994) J Am Chem Soc 116:42

    Article  CAS  Google Scholar 

  35. Falk H, Müller N, Ratzenhofer M, Winsauer K (1982) Monatsh Chem 113:1421

    Article  CAS  Google Scholar 

  36. Sloper R, Truscott T (1982) Photochem Photobiol 35:743

    Article  CAS  Google Scholar 

  37. Onishi S, Itoh S, lsobe K, Togari H, Kitoh H, Nishimura Y (1982) Pediatrics 69:273

    Google Scholar 

  38. Kanna Y, Arai T, Tokumaru K (1993) Bull Chem Soc Jpn 66:1586

    Article  CAS  Google Scholar 

  39. McDonagh AF (1979) Bile pigments. Biladienes and 5,15-bilatrienes. In: Dolphin D (ed) The porphyrins, vol VI. Academic, New York, p 293

    Chapter  Google Scholar 

  40. Blanckaert N, Fevery J, Heirwegh KP, Compernolle F (1977) Biochem J 164:237

    CAS  Google Scholar 

  41. Dörner T, Knipp B, Lightner D (1997) Tetrahredron 53:2697

    Article  Google Scholar 

  42. LeBas G, Allegret A, Mauguen Y, De Rango C, Bailly M (1980) Acta Cryst B 36:3007

    Article  Google Scholar 

  43. Bonnett R, Davies JE, Hursthouse MB, Sheldrick GM (1978) Proc Royal Soc Lond B 202:249

    Article  CAS  Google Scholar 

  44. McDonagh A, Lightner DA (2007) J Med Chem 50:480

    Article  CAS  Google Scholar 

  45. Jansen PL, Chowdhury JR, Fischberg EB, Arias IM (1977) J Biol Chem 252:2710

    CAS  Google Scholar 

  46. Spivak W, Carey MC (1985) Biochem J 225:787

    CAS  Google Scholar 

  47. Milas N, Kurz P, Anslow W Jr (1937) J Am Chem Soc 59:543

    Article  CAS  Google Scholar 

  48. Ostrow J, Branham R (1970) Birth Defects Orig Artic Ser 6:93

    CAS  Google Scholar 

  49. McDonagh AF, Lightner DA, Reisinger M, Palma LA (1986) J Chem Soc Chem Commun 249

  50. Lightner D, Trull F, Zhang M (1987) Tetrahedron Lett 28:1047

    Article  CAS  Google Scholar 

  51. Blanckaert N (1980) Biochem J 185:115

    CAS  Google Scholar 

Download references

Acknowledgments

I thank Wilma Norona, Lucita A. Palma, and Andrew Phimister for technical assistance and the National Institutes of Health for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antony F. McDonagh.

Additional information

Antony F. McDonagh: deceased October 22, 2012.

Correspondence: David A. Lightner, Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, USA. e-mail: lightner@unr.edu.

Electronic supplementary material

Supplementary material comprises general materials and methods, hydrolysis of glucuronides in bile, alkaline methanolysis of lumirubin glucuronide, and radiochemical determination of lumirubin extinction coefficients.

Supplementary material 1 (DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonagh, A.F. Bilirubin photo-isomers: regiospecific acyl glucuronidation in vivo. Monatsh Chem 145, 465–482 (2014). https://doi.org/10.1007/s00706-013-1076-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-013-1076-6

Keywords

Navigation