Skip to main content
Log in

Theoretical study of the excited-state reaction paths of the OH and NH dissociation processes in barbituric acid

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

We studied the OH and NH dissociation mechanisms of eight tautomers of barbituric acid via excited states. The theoretical research was performed at the TD DFT level of theory (B3LYP). It was found that all mechanisms pass through the repulsive 1πσ* excited state whose excited-state reaction paths showed conical intersections S0–S1. Some OH dissociation mechanisms showed barrierless 1πσ* reaction paths which indicate an ultrafast relaxation of the 1πσ* excited states to the ground state. The study of the NH dissociation mechanisms revealed that almost all 1πσ* reaction paths show low energy barriers and minima before the conical intersections S0–S1.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Franken H-D, Rueterjans H, Mueller F (1991) Tetrahedron 47:7593

    Article  CAS  Google Scholar 

  2. Zuccarello F, Buemi G, Gandolfo C, Contino A (2003) Spectrochim Acta A 59:139

    Article  Google Scholar 

  3. Roux MV, Temprado M, Notario R, Foces-Foces C, Emel’yanenko VN, Verevkin SP (2008) J Phys Chem A 112:7455

    Article  CAS  Google Scholar 

  4. Bolton W (1063) Acta Cryst 16:166

    Article  Google Scholar 

  5. Jeffrey GA, Ghose S, Warwicher JO (1961) Acta Cryst 14:881

    Article  CAS  Google Scholar 

  6. Delchev VB, Sobolewski AL, Domcke W (2010) Phys Chem Chem Phys 12:5007

    Article  CAS  Google Scholar 

  7. Kistler KA, Matsika S (2007) J Phys Chem A 111:2650

    Article  CAS  Google Scholar 

  8. Kistler KA, Matsika S (2007) Photochem Photobiol 83:611

    CAS  Google Scholar 

  9. Matsika S (2008) Chem Phys 349:356

    Article  CAS  Google Scholar 

  10. Matsika S, Kraue P (2011) Annu Rev Phys Chem 62:621

    Article  CAS  Google Scholar 

  11. Matsika S (2004) J Phys Chem A 108:7584

    Article  CAS  Google Scholar 

  12. Woywod C, Domcke W, Sobolewski AL, Werner H-J (1994) J Chem Phys 100:1400

    Article  CAS  Google Scholar 

  13. Perun S, Sobolewski AL, Domcke W (2005) J Am Chem Soc 127:6257

    Article  CAS  Google Scholar 

  14. Yamazaki S, Domcke W, Sobolewski A (2008) J Phys Chem A 112:11965

    Article  CAS  Google Scholar 

  15. Perun S, Sobolewski AL, Domcke W (2006) J Phys Chem A 110:13238

    Article  CAS  Google Scholar 

  16. Ismail N, Blancafort K, Olivucci M, Kohler B, Robb MA (2002) J Am Chem Soc 124:6818

    Article  CAS  Google Scholar 

  17. Pecourt J-ML, Peon J, Kohler B (2000) J Am Chem Soc 122:9348

    Article  CAS  Google Scholar 

  18. Crespo-Hernandez CE, Cohen B, Hare PM, Kohler B (2004) Chem Rev 104:1977

    Article  CAS  Google Scholar 

  19. Canuel C, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Elhanine M (2005) J Chem Phys 122:074316

    Article  Google Scholar 

  20. Chmura B, Rode M, Sobolewski A, Lapinski L, Nowak M (2008) J Phys Chem A 122:13655

    Article  Google Scholar 

  21. Delchev VB (2004) J Struct Chem 45:570

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision D.01. Gaussian, Inc., Wallingford, CT

Download references

Acknowledgments

We thank the scientific research fund of the University of Plovdiv for the financial support of the calculations (project NI-11-HF007/2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil B. Delchev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delchev, V.B., Ivanova, I.P. Theoretical study of the excited-state reaction paths of the OH and NH dissociation processes in barbituric acid. Monatsh Chem 143, 1141–1150 (2012). https://doi.org/10.1007/s00706-012-0766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0766-9

Keywords

Navigation