Skip to main content
Log in

Theoretical study on the protonation of bambus[6]uril

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Quantum mechanical density functional theory (DFT) calculations were used to derive the most probable structures of the bambus[6]uril·H3O+ and bambus[6]uril·(H3O+)2 cationic complex species. In these two complexes, each of the considered H3O+ ions is bound by three strong linear hydrogen bonds to the three corresponding carbonyl oxygens of the parent macrocyclic receptor.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1

Similar content being viewed by others

References

  1. Svec J, Necas M, Sindelar V (2010) Angew Chem Int Ed 49:2378

    CAS  Google Scholar 

  2. Toman P, Makrlík E, Vaňura P (2011) Monatsh Chem 142:881

    Article  CAS  Google Scholar 

  3. Toman P, Makrlík E, Vaňura P (2011) Monatsh Chem 142:993

    Article  CAS  Google Scholar 

  4. Makrlík E, Vaňura P (2006) Monatsh Chem 137:157

    Article  Google Scholar 

  5. Makrlík E, Vaňura P (2006) Monatsh Chem 137:1185

    Article  Google Scholar 

  6. Dybal J, Makrlík E, Vaňura P (2007) Monatsh Chem 138:541

    Article  CAS  Google Scholar 

  7. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2007) Monatsh Chem 138:735

    Article  Google Scholar 

  8. Dybal J, Makrlík E, Vaňura P, Selucký P (2007) Monatsh Chem 138:1239

    Article  CAS  Google Scholar 

  9. Dybal J, Makrlík E, Vaňura P, Budka J (2008) Monatsh Chem 139:1175

    Article  CAS  Google Scholar 

  10. Dybal J, Makrlík E, Budka J, Vaňura P (2008) Monatsh Chem 139:1353

    Article  CAS  Google Scholar 

  11. Makrlík E, Dybal J, Vaňura P (2009) Monatsh Chem 140:29

    Article  Google Scholar 

  12. Makrlík E, Dybal J, Budka J, Vaňura P (2009) Monatsh Chem 140:1155

    Article  Google Scholar 

  13. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2010) Monatsh Chem 141:19

    Article  Google Scholar 

  14. Makrlík E, Čajan M, Budka J, Vaňura P (2011) Monatsh Chem 142:5

    Article  Google Scholar 

  15. Makrlík E, Vaňura P, Budka J (2009) Monatsh Chem 140:583

    Article  Google Scholar 

  16. Toman P, Makrlík E, Vaňura P, Kašička V, Rathore R (2010) Monatsh Chem 141:737

    Article  CAS  Google Scholar 

  17. Kříž J, Dybal J, Makrlík E (2006) Biopolymers 82:536

    Article  Google Scholar 

  18. Kříž J, Dybal J, Makrlík E, Vaňura P, Lang J (2007) Supramol Chem 19:419

    Article  Google Scholar 

  19. Kříž J, Dybal J, Makrlík E, Vaňura P (2008) Supramol Chem 20:387

    Article  Google Scholar 

  20. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2008) Supramol Chem 20:487

    Article  Google Scholar 

  21. Kříž J, Dybal J, Makrlík E, Budka J (2008) J Phys Chem A 112:10236

    Article  Google Scholar 

  22. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2009) J Phys Chem A 113:5896

    Article  Google Scholar 

  23. Kříž J, Toman P, Makrlík E, Budka J, Shukla R, Rathore R (2010) J Phys Chem A 114:5327

    Article  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  25. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C. 02, Gaussian, Wallingford CT

Download references

Acknowledgments

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, project No.: 42900/1312/3114 “Environmental Aspects of Sustainable Development of Society”, by the Czech Ministry of Education, Youth, and Sports (project MSM 6046137307), and by the Czech Science Foundation (project P 205/10/2280). The computer time at the MetaCentrum (project LM 2010005), as well as at the Institute of Physics (computer Luna/Apollo), Academy of Sciences of the Czech Republic, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Makrlík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toman, P., Makrlík, E. & Vaňura, P. Theoretical study on the protonation of bambus[6]uril. Monatsh Chem 143, 373–376 (2012). https://doi.org/10.1007/s00706-011-0682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0682-4

Keywords

Navigation