Skip to main content

Advertisement

Log in

HERV-K (HML-2) insertion polymorphisms in the 8q24.13 region and their potential etiological associations with acute myeloid leukemia

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Human endogenous retroviruses (HERVs) are LTR retrotransposons that are present in the human genome. Among them, members of the HERV-K (HML-2) group are suspected to play a role in the development of different types of cancer, including lung, ovarian, and prostate cancer, as well as leukemia. Acute myeloid leukemia (AML) is an important disease that causes 1% of cancer deaths in the United States and has a survival rate of 28.7%. Here, we describe a method for assessing the statistical association between HERV-K (HML-2) transposable element insertion polymorphisms (or TIPs) and AML, using whole-genome sequencing and read mapping using TIP_finder software. Our results suggest that 101 polymorphisms involving HERV-K (HML-2) elements were correlated with AML, with a percentage between 44.4 to 56.6%, most of which (70) were located in the region from 8q24.13 to 8q24.21. Moreover, it was found that the TRIB1, LRATD2, POU5F1B, MYC, PCAT1, PVT1, and CCDC26 genes could be displaced or fragmented by TIPs. Furthermore, a general method was devised to facilitate analysis of the correlation between transposable element insertions and specific diseases. Finally, although the relationship between HERV-K (HML-2) TIPs and AML remains unclear, the data reported in this study indicate a statistical correlation, as supported by the χ2 test with p-values < 0.05.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available at Zenodo https://doi.org/10.5281/zenodo.7770141.

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  2. Ariza ME, Williams MV (2011) A human endogenous retrovirus K dUTPase triggers a TH1, TH17 cytokine response: does it have a role in psoriasis? J Investig Dermatol 131(12):2419–2427

    Article  CAS  PubMed  Google Scholar 

  3. Barrón MG, Fiston-Lavier AS, Petrov DA, González J (2014) Population genomics of transposable elements in Drosophila. Annu Rev Genet. https://doi.org/10.1146/annurev-genet-120213-092359

    Article  PubMed  Google Scholar 

  4. Bhan A, Soleimani M, Mandal SS (2017) Long noncoding RNA and cancer: a new paradigm. Can Res 77(15):3965–3981. https://doi.org/10.1158/0008-5472.CAN-16-2634

    Article  CAS  Google Scholar 

  5. Bradley-Golem S (2013) Human endogenous retrovirus (HERV) insertional polymorphisms. Ms. C Thesis, Department of Biological Sciences, Brock University

  6. Carpentier MC, Manfroi E, Wei FJ, Wu HP, Lasserre E, Llauro C, Debladis E, Akakpo R, Hsing YI, Panaud O (2019) Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nat Commun. https://doi.org/10.1038/s41467-018-07974-5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cegolon L, Salata C, Weiderpass E, Vineis P, Palù G, Mastrangelo G (2013) Human endogenous retroviruses and cancer prevention: Evidence and prospects. BMC Cancer. https://doi.org/10.1186/1471-2407-13-4

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chen C, Wang P, Mo W, Zhang Y, Zhou W, Deng T, Zhou M, Chen X, Wang S, Wang C (2019) lncRNA-CCDC26, as a novel biomarker, predicts prognosis in acute myeloid leukemia. Oncol Lett 18(3):2203–2211. https://doi.org/10.3892/ol.2019.10591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen J, Wu JS, Mize T, Moreno M, Hamid M, Servin F, Bashy B, Zhao Z, Jia P, Tsuang MT, Kendler KS, Xiong M, Chen X (2019) A frameshift variant in the CHST9 gene identified by family-based whole genome sequencing is associated with schizophrenia in Chinese population. Sci Rep 9(1):1–9. https://doi.org/10.1038/s41598-019-49052-w

    Article  CAS  Google Scholar 

  10. Chen X, Li D (2019) ERVcaller: identifying polymorphic endogenous retrovirus and other transposable element insertions using whole-genome sequencing data. Bioinformatics 35(20):3913–3922. https://doi.org/10.1093/bioinformatics/btz205

    Article  CAS  PubMed  Google Scholar 

  11. Cheng C, Cui H, Zhang L, Jia Z, Song B, Wang F, Li Y, Liu J, Kong P, Shi R, Bi Y, Yang B, Wang J, Zhao Z, Zhang Y, Hu X, Yang J, He C, Zhao Z, Cui Y (2016) Genomic analyses reveal FAM84B and the NOTCH pathway are associated with the progression of esophageal squamous cell carcinoma. GigaScience 5:1. https://doi.org/10.1186/s13742-015-0107-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chinen Y, Sakamoto N, Nagoshi H, Taki T, Maegawa S, Tatekawa S, Tsukamoto T, Mizutani S, Shimura Y, Yamamoto-sugitani M, Kobayashi T (2014) 8q24 amplified segments involve novel fusion genes between NSMCE2 and long noncoding RNAs in acute myelogenous leukemia. J Hematol Oncol. https://doi.org/10.1186/s13045-014-0068-2

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cochran W (1954) Some methods for strengthening the common X^2 tests. Int Biometr Soc 10: 417–451. http://www.jstor.org/stable/3001616

  14. Cohen CJ, Lock WM, Mager DL (2009) Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448(2):105–114

    Article  CAS  PubMed  Google Scholar 

  15. Coordinators NR (2016) Database resources of the National Center for biotechnology information. Nucleic Acids Res 44(D1):D7–D19. https://doi.org/10.1093/nar/gkv1290

    Article  CAS  Google Scholar 

  16. Dalcin LD, Paz RR, Kler PA, Cosimo A (2011) Parallel distributed computing using Python. Adv Water Resour 34(9):1124–1139. https://doi.org/10.1016/j.advwatres.2011.04.013

    Article  CAS  Google Scholar 

  17. Deniz Ö, Ahmed M, Todd CD, Rio-Machin A, Dawson MA, Branco MR (2020) Endogenous retroviruses are a source of enhancers with oncogenic potential in acute myeloid leukaemia. Nat Commun 11(1):3506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Depil S, Roche C, Dussart P, Prin L (2002) Expression of a human endogenous retrovirus, HERV-K, in the blood cells of leukemia patients. Leukemia 16(2):254–259. https://doi.org/10.1038/sj.leu.2402355

    Article  CAS  PubMed  Google Scholar 

  19. Dieter C, Lourenco ED, Lemos NE (2020) Association of long non-coding RNA and leukemia: A systematic review. Gene 735:144405. https://doi.org/10.1016/j.gene.2020.144405

    Article  CAS  PubMed  Google Scholar 

  20. Eyers PA, Keeshan K, Kannan N (2017) Tribbles in the 21st century: the evolving roles of tribbles Pseudokinases in biology and disease. Trends Cell Biol 27(4):284–298. https://doi.org/10.1016/j.tcb.2016.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fernandes JCR, Acuña SM, Aoki JI, Floeter-Winter LM, Muxel SM (2019) Long non-coding RNAs in the regulation of gene expression: physiology and disease. Non-Coding RNA. https://doi.org/10.3390/ncrna5010017

    Article  PubMed  PubMed Central  Google Scholar 

  22. Garcia-Montojo M, Doucet-O’Hare T, Henderson L, Nath A (2018) Human endogenous retrovirus-K (HML-2): a comprehensive review. Crit Rev Microbiol 44(6):715–738. https://doi.org/10.1080/1040841X.2018.1501345

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ghafouri-Fard S, Dashti S, Taheri M (2020) PCAT1: an oncogenic lncRNA in diverse cancers and a putative therapeutic target. Exp Mol Pathol 114:104429. https://doi.org/10.1016/j.yexmp.2020.104429

    Article  CAS  PubMed  Google Scholar 

  24. Ghetti M, Vannini I, Storlazzi CT, Martinelli G, Simonetti G (2020) Linear and circular PVT1 in hematological malignancies and immune response: two faces of the same coin. Mol Cancer 19(1):69. https://doi.org/10.1186/s12943-020-01187-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hayashi H, Arao T, Togashi Y, Kato H, Fujita Y, De Velasco MA, Kimura H, Matsumoto K, Tanaka K, Okamoto I, Ito A, Yamada Y, Nakagawa K, Nishio K (2015) The OCT4 pseudogene POU5F1B is amplified and promotes an aggressive phenotype in gastric cancer. Oncogene 34(2):199–208. https://doi.org/10.1038/onc.2013.547

    Article  CAS  PubMed  Google Scholar 

  26. Hirano T, Yoshikawa R, Harada H, Harada Y, Ishida A, Yamazaki T (2015) Long noncoding RNA, CCDC26, controls myeloid leukemia cell growth through regulation of KIT expression. Mol Cancer 14:90. https://doi.org/10.1186/s12943-015-0364-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Howlader N, Noone A, Krapcho M, Miller D, Brest A, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis D, Chen H, Feuer E, Cronin K (2020) SEER cancer statistics review, 1975–2017. National Cancer Institute. https://seer.cancer.gov/csr/1975_2017/

  28. Huarte M (2015) The emerging role of lncRNAs in cancer. Nat Med 21(11):1253–1261. https://doi.org/10.1038/nm.3981

    Article  CAS  PubMed  Google Scholar 

  29. Izadifard M, Pashaiefar H, Yaghmaie M, Montazeri M, Sadraie M, Momeny M, Jalili M, Ahmadvand M, Ghaffari SH, Mohammadi S, Alimoghaddam K, Ghavamzadeh A (2018) Expression analysis of PVT1, CCDC26, and CCAT1 long noncoding RNAs in acute myeloid leukemia patients. Genet Test Mol Biomark 22(10):593–598. https://doi.org/10.1089/gtmb.2018.0143

    Article  CAS  Google Scholar 

  30. Januszkiewicz-Lewandowska D, Nowicka K, Rembowska J, Fichna M, Zurawek M, Derwich K, Nowak J (2013) Env gene expression of human endogenous retrovirus-k and human endogenous retrovirus-W in childhood acute leukemia cells. Acta Haematol 129(4):232–237. https://doi.org/10.1159/000345407

    Article  CAS  PubMed  Google Scholar 

  31. Jern P, Sperber GO, Blomberg J (2005) Use of endogenous retroviral sequences (ERVs) and structural markers for retroviral phylogenetic inference and taxonomy. Retrovirology 2(1):1–12

    Article  Google Scholar 

  32. Kamath A, Tara H, Xiang B, Bajaj R, He W, Li P (2008) Double-minute MYC amplification and deletion of MTAP, CDKN2A, CDKN2B, and ELAVL2 in an acute myeloid leukemia characterized by oligonucleotide-array comparative genomic hybridization. Cancer Genet Cytogenet 183(2):117–120. https://doi.org/10.1016/j.cancergencyto.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  33. Kastler S, Honold L, Luedeke M, Kuefer R, Möller P, Hoegel J, Vogel W, Maier C, Assum G (2010) POU5F1P1, a putative cancer susceptibility gene, is overexpressed in prostatic carcinoma. Prostate 70(6):666–674. https://doi.org/10.1002/pros.21100

    Article  CAS  PubMed  Google Scholar 

  34. Keeshan K, Vieugué P, Chaudhury S, Rishi L, Gaillard C, Liang L, Garcia E, Nakamura T, Omidvar N, Kogan SC (2016) Co-operative leukemogenesis in acute myeloid leukemia and acute promyelocytic leukemia reveals C/EBPα as a common target of TRIB1 and PML/RARA. Haematologica 101(10):1228–1236. https://doi.org/10.3324/haematol.2015.138503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. L’Abbate A, Tolomeo D, Cifola I, Severgnini M, Turchiano A, Augello B, Squeo G, D’Addabbo P, Traversa D, Daniele G, Lonoce A, Pafundi M, Carella M, Palumbo O, Dolnik A, Muehlematter D, Schoumans J, Van Roy N, De Bellis G, Storlazzi CT (2018) MYC-containing amplicons in acute myeloid leukemia: genomic structures, evolution, and transcriptional consequences. Leukemia 32(10):2152–2166. https://doi.org/10.1038/s41375-018-0033-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ (2012) Landscape of somatic retrotransposition in human cancers. Science 337(6097):967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leinonen R, Akhtar R, Birney E, Bower L, Cerdeno-ta A, Cheng Y, Cleland I, Faruque N, Goodgame N, Gibson R, Hoad G, Jang M, Pakseresht N, Plaister S, Radhakrishnan R, Reddy K, Sobhany S, Hoopen PT, Vaughan R, Zalunin V (2011) Eur Nucleotide Arch. 39:44–47. https://doi.org/10.1093/nar/gkq967

    Article  CAS  Google Scholar 

  39. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39(SUPPL. 1):2010–2012. https://doi.org/10.1093/nar/gkq1019

    Article  CAS  Google Scholar 

  40. Leyto-Cruz F (2018) Leucemia Mielóide Aguda. Rev Hematol 19(1):24–40

    Google Scholar 

  41. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang KL, Rishi L, Keeshan K (2013) Tribbles in acute leukemia. Blood 121(21):4265–4270. https://doi.org/10.1182/blood-2012-12-471300

    Article  CAS  PubMed  Google Scholar 

  43. Liu X-L, Liu H-M, Han N, Li F-H, Sun F, Fan D-M, Xu Q (2019) PCAT1 promotes the proliferative and migratory potentials of ovarian cancer via targeting NEK2. Eur Rev Med Pharmacol Sci 23(19):8239–8248. https://doi.org/10.26355/eurrev_201910_19133

    Article  PubMed  Google Scholar 

  44. Marchi E, Kanapin A, Magiorkinis G, Belshaw R (2014) Unfixed endogenous retroviral insertions in the human population. J Virol 88(17):9529–9537

    Article  PubMed  PubMed Central  Google Scholar 

  45. Mashima J, Kodama Y, Fujisawa T, Katayama T, Okuda Y, Kaminuma E, Ogasawara O, Okubo K, Nakamura Y, Takagi T (2017) DNA data bank of Japan. Nucleic Acids Res 45(D1):D25–D31. https://doi.org/10.1093/nar/gkw1001

    Article  CAS  PubMed  Google Scholar 

  46. Moyes D, Griffiths DJ, Venables PJ (2007) Insertional polymorphisms: a new lease of life for endogenous retroviruses in human disease. Trends Genet 23(7):326–333

    Article  CAS  PubMed  Google Scholar 

  47. Nakamura T (2015) The role of Trib1 in myeloid leukaemogenesis and differentiation. Biochem Soc Trans 43(5):1104–1107. https://doi.org/10.1042/BST20150110

    Article  CAS  PubMed  Google Scholar 

  48. Orozco-Arias S, Tobon-Orozco N, Piña JS, Jiménez-Varón CF, Tabares-Soto R, Guyot R (2020) TIP_finder: an HPC software to detect transposable element insertion polymorphisms in large genomic datasets. Biology. https://doi.org/10.3390/biology9090281

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pan Y, Zhan L, Chen L, Zhang H, Sun C, Xing C (2018) POU5F1B promotes hepatocellular carcinoma proliferation by activating AKT. Biomed Pharmacother 100:374–380. https://doi.org/10.1016/j.biopha.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  50. Peng W, Jiang A (2016) Long noncoding RNA CCDC26 as a potential predictor biomarker contributes to tumorigenesis in pancreatic cancer. Biomed Pharmacother 83:712–717. https://doi.org/10.1016/j.biopha.2016.06.059

    Article  CAS  PubMed  Google Scholar 

  51. Plazzer JP, Sijmons RH, Woods MO, Peltomäki P, Thompson B, Den Dunnen JT, Macrae F (2013) The InSiGHT database: utilizing 100 years of insights into Lynch syndrome. Fam Cancer 12(2):175–180

    Article  CAS  PubMed  Google Scholar 

  52. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Redaelli A, Lee JM, Stephens JM, Pashos CL (2003) Epidemiology and clinical burden of acute myeloid leukemia. Expert Rev Anticancer Ther 3(5):695–710. https://doi.org/10.1586/14737140.3.5.695

    Article  CAS  PubMed  Google Scholar 

  54. Röthlisberger B, Heizmann M, Bargetzi MJ, Huber AR (2007) TRIB1 overexpression in acute myeloid leukemia. Cancer Genet Cytogenet 176(1):58–60. https://doi.org/10.1016/j.cancergencyto.2007.03.003

    Article  CAS  PubMed  Google Scholar 

  55. Sequence Read Archive Submissions Staff (2011) Using the SRA toolkit to convert .sra files into other formats. SRA Knowledge Base

  56. Shin W, Lee J, Son S-Y, Ahn K, Kim H-S, Han K (2013) Human-specific HERV-K insertion causes genomic variations in the human genome. PLoS ONE 8(4):e60605. https://doi.org/10.1371/journal.pone.0060605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Slotkin RK, Martienssen R (2007) Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8(4):272–285. https://doi.org/10.1038/nrg2072

    Article  CAS  PubMed  Google Scholar 

  58. Stone RM, O’Donnell MR, Sekeres MA (2004) Acute myeloid leukemia. Hematology. https://doi.org/10.1182/asheducation-2004.1.98

    Article  PubMed  Google Scholar 

  59. Subramanian RP, Wildschutte JH, Russo C, Coffin JM (2011) Identification, characterization, and comparative genomic distribution of the HERV-K (HML-2) group of human endogenous retroviruses. Retrovirology 8:90. https://doi.org/10.1186/1742-4690-8-90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Voelkerding KV, Dames SA, Durtschi JD (2009) Next-generation sequencing:from basic research to diagnostics. Clin Chem 55(4):641–658. https://doi.org/10.1373/clinchem.2008.112789

    Article  CAS  PubMed  Google Scholar 

  61. Wang S, Hui Y, Li X, Jia Q (2018) Silencing of lncRNA CCDC26 restrains the growth and migration of glioma cells in vitro and in vivo via targeting miR-203. Oncol Res 26(8):1143–1154. https://doi.org/10.3727/096504017X14965095236521

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wong N, Gu Y, Kapoor A, Lin X, Ojo D, Wei F, Yan J, de Melo J, Major P, Wood G, Aziz T, Cutz J-C, Bonert M, Patterson AJ, Tang D (2017) Upregulation of FAM84B during prostate cancer progression. Oncotarget 8(12):19218–19235. https://doi.org/10.18632/oncotarget.15168

    Article  PubMed  PubMed Central  Google Scholar 

  63. Xue B, Zeng T, Jia L, Yang D, Lin SL, Sechi LA, Kelvin DJ (2020) Identification of the distribution of human endogenous retroviruses K (HML-2) by PCR-based target enrichment sequencing. Retrovirology 17(1):1–15

    Article  Google Scholar 

  64. Yang C, Guo X, Li J, Han J, Jia L, Wen HL, Li L (2022) Significant upregulation of HERV-K (HML-2) transcription levels in human lung cancer and cancer cells. Front Microbiol 13:2

    Google Scholar 

  65. Yan J, Chen D, Chen X, Sun X, Dong Q, Hu C, Zhou F, Chen W (2019) Downregulation of lncRNA CCDC26 contributes to imatinib resistance in human gastrointestinal stromal tumors through IGF-1R upregulation. Braz J Med Biol Res 52(6):e8399. https://doi.org/10.1590/1414-431x20198399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yates AD, Achuthan P, Akanni W, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J, Billis K, Boddu S, Marugán JC, Cummins C, Davidson C, Dodiya K, Fatima R, Gall A, Flicek P (2020) Ensembl 2020. Nucleic Acids Res 48(D1):682–688. https://doi.org/10.1093/nar/gkz966

    Article  CAS  Google Scholar 

  67. Yi J, Zhou L-Y, Yi Y-Y, Zhu X, Su X-Y, Zhao Q, Lin J, Qian J, Deng Z-Q (2019) Low expression of pseudogene POU5F1B affects diagnosis and prognosis in acute myeloid leukemia (AML). Med Sci Monit 25:4952–4959. https://doi.org/10.12659/MSM.914352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yokoyama T, Kanno Y, Yamazaki Y, Takahara T, Miyata S, Nakamura T (2010) Trib1 links the MEK1/ERK pathway in myeloid leukemogenesis. Blood 116(15):2768–2775. https://doi.org/10.1182/blood-2009-10-246264

    Article  CAS  PubMed  Google Scholar 

  69. Yu Y, Ouyang Y, Yao W (2018) shinyCircos: an R/Shiny application for interactive creation of Circos plot. Bioinformatics 34(7):1229–1231. https://doi.org/10.1093/bioinformatics/btx763

    Article  CAS  PubMed  Google Scholar 

  70. Yuan Y, Wang Q, Ma SL, Xu LQ, Liu MY, Han B, Du N, Sun XL, Yin XL, Cao FF (2019) lncRNA PCAT-1 interacting with FZD6 contributes to the malignancy of acute myeloid leukemia cells through activating Wnt/β-catenin signaling pathway. Am J Transl Res 11(11):7104–7114

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang Y, Li Q, Yu S, Zhu C, Zhang Z, Cao H, Xu J (2019) Long non-coding RNA FAM84B-AS promotes resistance of gastric cancer to platinum drugs through inhibition of FAM84B expression. Biochem Biophys Res Commun 509(3):753–762. https://doi.org/10.1016/j.bbrc.2018.12.177

    Article  CAS  PubMed  Google Scholar 

  72. Zhu X, Zhao Q, Su X, Ke J, Yi Y, Yi J, Lin J, Qian J, Deng Z (2020) A three-gene signature might predict prognosis in patients with acute myeloid leukemia. Biosci Rep. https://doi.org/10.1042/BSR20193808

Download references

Acknowledgements

We would like to thank the following HPC bioinformatics platforms for their support: the French Bioinformatics Institute (https://www.france-bioinformatique.fr) and IRD (https://bioinfo.ird.fr/).

Funding

Simon Orozco-Arias was supported by a Ph.D. grant from the Ministry of Science, Technology and Innovation (Minciencias) of Colombia, Grant no. 785/2017.

Author information

Authors and Affiliations

Authors

Contributions

RG and SO-A contributed to the study conception and design. Material preparation, data collection, and analysis were performed by NC-F. The first draft of the manuscript was written by NC-F, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Simon Orozco-Arias.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Tim Skern.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2275 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo-Forero, N., Orozco-Arias, S., Perez Agudelo, J.M. et al. HERV-K (HML-2) insertion polymorphisms in the 8q24.13 region and their potential etiological associations with acute myeloid leukemia. Arch Virol 168, 125 (2023). https://doi.org/10.1007/s00705-023-05747-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-023-05747-0

Navigation