Skip to main content
Log in

Molecular characteristics of a novel hypovirus from Trichoderma harzianum

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

We report a novel mycovirus with a positive-sense single-stranded (+)ss RNA genome, belonging to the family Hypoviridae, infecting Trichoderma harzianum strain M6. The complete genome sequence is 13,813 nucleotides long, excluding the poly(A) tail at the 3′ end. Sequence analysis revealed that the genome has a single large open reading frame (ORF) encoding a 4,118-amino-acid polyprotein harboring five conserved motifs of a protease, two conserved domains of a protein of unknown function, an RNA-dependent RNA polymerase, and a helicase. Sequence comparisons revealed that the deduced amino acid sequence of the polyprotein is similar to those of other hypoviruses and is most similar to that of Bipolaris oryzae hypovirus 1 (35.1% identity). Phylogenetic analysis using full-length RdRp and helicase sequences showed that this virus clustered closely with known members of the proposed genus “Alphahypovirus” of the family Hypoviridae. We accordingly designated this novel mycovirus “Trichoderma harzianum hypovirus 2” (ThHV2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

The genome sequence of the hypovirus described here has been submitted to the GenBank database.

References

  1. Harman GE (2011) Multifunctional fungal plant symbionts: new tools to enhance plant growth and productivity. New Phytol 189:647–649. https://doi.org/10.1111/j.1469-8137.2010.03614.x

    Article  PubMed  Google Scholar 

  2. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56. https://doi.org/10.1038/nrmicro797

    Article  CAS  PubMed  Google Scholar 

  3. Tokimoto K (1985) Physiological studies on antagonism between Lentinula edodes and Trichoderma spp. in bedlogs of the former (in Japanese). Rep Tottori Mycol Inst 23:1–54

    Google Scholar 

  4. Ulhoa CJ, Peberdy JF (1992) Purification and some properties of the extracellular chitinase produced by Trichoderma harzianum. Enzyme Microb Technol 14:236–240. https://doi.org/10.1016/0141-0229(92)90072-V

    Article  CAS  Google Scholar 

  5. Seaby D (1998) Trichoderma as a weed mould or pathogen in mushroom cultivation. In: Harmann GE, Kubicek CP (eds) Trichoderma and Gliocladium, vol 2. Taylor and Francis Ltd. London, UK, pp 267–288

    Google Scholar 

  6. Kredics L, Garcia Jimenez L, Naeimi S, Czifra D, Urban P, Manczinger L, Vagvolgyi C, Hatvani L (2010) A challenge to mushroom growers: the green mould disease of cultivated champignons. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 1. Formatex Research Center. Badajoz, Spain, pp 295–305

    Google Scholar 

  7. Van Alfen NK (1986) Hypovirulence of Endothia (Cryphonectria) parasitica and Rhizoctonia solani. In: Buck KW (ed) Fungal virology. CRC Press, Boca Raton, USA, pp 143–162

    Google Scholar 

  8. Nuss DL, Koltin Y (1990) Significance of dsRNA genetic elements in plant pathogenic fungi. Annu Rev Phytopathol 28:37–58. https://doi.org/10.1146/annurev.py.28.090190.000345

    Article  CAS  PubMed  Google Scholar 

  9. Wickner RB (1992) Double-stranded and single-stranded RNA viruses of Saccharomyces cerevisiae. Annu Rev Microbiol 46:347–375. https://doi.org/10.1146/annurev.mi.46.100192.002023

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki N, Ghabrial SA, Kim KH, Pearson M, Marzano SYL, Yaegashi H, Xie J, Guo L, Kondo H, Koloniuk I et al (2018) ICTV Virus Taxonomy Profile: Hypoviridae. J Gen Virol 99:615–616. https://doi.org/10.1099/jgv.0.001055

    Article  CAS  PubMed  Google Scholar 

  11. Fahima T, Kazmierczak P, Hansen DR, Pfeiffer P, Van Alfen NK (1993) Membrane-associated replication of an unencapsidated double-stranded RNA of the fungus, Cryphonectria parasitica. Virology 195:81–89. https://doi.org/10.1006/viro.1993.1348

    Article  CAS  PubMed  Google Scholar 

  12. Jacob-Wilk D, Turina M, Van Alfen NK (2006) Mycovirus Cryphonectria hypovirus 1 elements cofractionate with trans-Golgi network membranes of the fungal host Cryphonectria parasitica. J Virol 80:6588–6596. https://doi.org/10.1128/JVI.02519-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie J, Xiao X, Fu Y, Liu H, Cheng J, Ghabrial SA, Li G, Jiang D (2011) A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum. Virology 418:49–56. https://doi.org/10.1016/j.virol.2011.07.008

    Article  CAS  PubMed  Google Scholar 

  14. Yaegashi H, Kanematsu S, Ito T (2012) Molecular characterization of a new hypovirus infecting a phytopathogenic fungus Valsa ceratosperma. Virus Res 165:143–150. https://doi.org/10.1016/j.virusres.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  15. Wang S, Kondo H, Liu L, Guo L, Qiu D (2013) A novel virus in the family Hypoviridae from the plant pathogenic fungus Fusarium graminearum. Virus Res 174:69–77. https://doi.org/10.1016/j.virusres.2013.03.00

    Article  CAS  PubMed  Google Scholar 

  16. Hu Z, Wu S, Cheng J, Fu Y, Jiang D, Xie J (2014) Molecular characterization of two positive-strand RNA viruses co-infecting a hypovirulent strain of Sclerotinia sclerotiorum. Virology 464–465:450–459. https://doi.org/10.1016/j.virol.2014.07.007

    Article  CAS  PubMed  Google Scholar 

  17. Koloniuk I, El-Habbak MH, Petrzik K, Ghabrial SA (2014) Complete genome sequence of a novel hypovirus infecting Phomopsis longicolla. Arch Virol 159:1861–1863. https://doi.org/10.1007/s00705-014-1992-8

    Article  CAS  PubMed  Google Scholar 

  18. Li P, Zhang H, Chen X, Qiu D, Guo L (2015) Molecular characterization of a novel hypovirus from the plant pathogenic fungus Fusarium graminearum. Virology 481:151–160. https://doi.org/10.1016/j.virol.2015.02.047

    Article  CAS  PubMed  Google Scholar 

  19. Osaki H, Sasaki A, Nomiyama K, Tomioka K (2016) Multiple virus infection in a single strain of Fusarium poae shown by deep sequencing. Virus Genes 52:835–847. https://doi.org/10.1007/s11262-016-1379-x

    Article  CAS  PubMed  Google Scholar 

  20. Li P, Chen X, He H, Qiu D, Guo L (2017) Complete genome sequence of a novel hypovirus from the phytopathogenic fungus Fusarium langsethiae. Genome Announc 5:e1722–e1816

    Google Scholar 

  21. Arjona-Lopez JM, Telengech P, Jamal A, Hisano S, Kondo H, Yelin MD, Arjona-Girona I, Kanematsu S, Lopez-Herrera CJ, Suzuki N (2018) Novel, diverse RNA viruses from Mediterranean isolates of the phytopathogenic fungus, Rosellinia necatrix: insights into evolutionary biology of fungal viruses. Environ Microbiol 20:1464–1483. https://doi.org/10.1111/1462-2920.14065

    Article  CAS  PubMed  Google Scholar 

  22. Hao F, Ding T, Wu M, Zhang J, Yang L, Chen W, Li G (2018) Two novel hypovirulence-associated mycoviruses in the phytopathogenic fungus Botrytis cinerea: Molecular characterization and suppression of infection cushion formation. Viruses 10:254. https://doi.org/10.3390/v10050254

    Article  CAS  PubMed Central  Google Scholar 

  23. Velasco L, Arjona-Girona I, Ariza-Fernández MT, Cretazzo E, López-Herrera C (2018) A novel hypovirus species from Xylariaceae fungi infecting avocado. Front Microbiol 9:778. https://doi.org/10.3389/fmicb.2018.00778

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gilbert KB, Holcomb EE, Allscheid RL, Carrington JC (2019) Hiding in plain sight: New virus genomes discovered via a systematic analysis of fungal public transcriptomes. PLoS One 14:e0219207. https://doi.org/10.1371/journal.pone.0219207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li H, Bian R, Liu Q, Yang L, Pang T, Salaipeth L, Andika IB, Kondo H, Sun L (2019) Identification of a novel hypovirulence-inducing hypovirus from Alternaria alternata. Front Microbiol 10:1076. https://doi.org/10.3389/fmicb.2019.01076

    Article  PubMed  PubMed Central  Google Scholar 

  26. Torres-Trenas A, Cañizares MC, García-Pedrajas MD, Pérez-Artés E (2020) Molecular and biological characterization of the first hypovirus identified in Fusarium oxysporum. Front Microbiol 10:3131. https://doi.org/10.3389/fmicb.2019.03131

    Article  PubMed  PubMed Central  Google Scholar 

  27. Khalifa ME, Pearson MN (2014) Characterisation of a novel hypovirus from Sclerotinia sclerotiorum potentially representing a new genus within the Hypoviridae. Virology 464–465:441–449. https://doi.org/10.1016/j.virol.2014.07.005

    Article  CAS  PubMed  Google Scholar 

  28. Yun SH, Lee SH, So KK, Kim JM, Kim DH (2016) Incidence of diverse dsRNA mycoviruses in Trichoderma spp. causing green mold disease of shiitake Lentinula edodes. FEMS Microbiol Lett 363:fnw220. https://doi.org/10.1093/femsle/fnw220

    Article  CAS  PubMed  Google Scholar 

  29. Chun J, Yang HE, Kim DH (2018) Identification and molecular characterization of a novel partitivirus from Trichoderma atroviride NFCF394. Viruses 10:578. https://doi.org/10.3390/v10110578

    Article  CAS  PubMed Central  Google Scholar 

  30. Chun J, Yang HE, Kim DH (2018) Identification of a novel partitivirus of Trichoderma harzianum NFCF319 and evidence for the related antifungal activity. Front Plant Sci 9:1699. https://doi.org/10.3389/fpls.2018.01699

    Article  PubMed  PubMed Central  Google Scholar 

  31. You J, Zhou K, Liu X, Wu M, Yang L, Zhang J, Chen W, Li G (2019) Defective RNA of a novel mycovirus with high transmissibility detrimental to biocontrol properties of Trichoderma spp. Microorganisms 7:507. https://doi.org/10.3390/microorganisms7110507

    Article  CAS  PubMed Central  Google Scholar 

  32. Lee SH, Yun SH, Chun J, Kim DH (2017) Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF028. Arch Virol 162:1073–1077. https://doi.org/10.1007/s00705-016-3214-z

    Article  CAS  PubMed  Google Scholar 

  33. Chun J, Na B, Kim DH (2020) Characterization of a novel dsRNA mycovirus of Trichoderma atroviride NFCF377 reveals a member of “Fusagraviridae” with changes in antifungal activity of the host fungus. J Microbiol 58:1046–1053. https://doi.org/10.1007/s12275-020-0380-1

    Article  CAS  PubMed  Google Scholar 

  34. Liu C, Li M, Redda ET, Mei J, Zhang J, Elena SF, Wu B, Jiang X (2019) Complete nucleotide sequence of a novel mycovirus from Trichoderma harzianum in China. Arch Virol 164:1213–1216. https://doi.org/10.1007/s00705-019-04145-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marchler-Bauer A, Bo Y, Han LY, He JE, Lanczycki CJ, Lu SN, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR et al (2017) CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res 45:D200–D203. https://doi.org/10.1093/nar/gkw1129

    Article  CAS  PubMed  Google Scholar 

  36. Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K, Schnier J, Slonimski PP (1989) Birth of the D-E-A-D box. Nature 337:121–122. https://doi.org/10.1038/337121a0

    Article  CAS  PubMed  Google Scholar 

  37. Hall MC, Matson SW (1999) Helicase motifs: the engine that powers DNA unwinding. Mol Microbiol 34:867–877. https://doi.org/10.1046/j.1365-2958.1999.01659.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank the Institute of Molecular Biology and Genetics at Jeonbuk National University for kindly providing the facilities for this research.

Funding

This work was supported by the NRF grants NRF-2018R1A2A1A05078682 and NRF-2019R1I1A1A01061618, and by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, and Forestry (IPET) through the Agri-Bio Industry Technology Development Program, funded by the Ministry of Agriculture, Food, and Rural Affairs (MAFRA) (317025-05-5-HD020). This research was supported by “Research Base Construction Fund Support Program” funded by Jeonbuk National University in 2021.

Author information

Authors and Affiliations

Authors

Contributions

Dae-Hyuk Kim wrote the manuscript. Jeesun Chun and Kum-Kang So performed the experiments. Dae-Hyuk Kim, Jeesun Chun, Kum-Kang So, and Yo-Han Ko analyzed the data.

Corresponding author

Correspondence to Dae-Hyuk Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Robert H.A. Coutts.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TXT 14 KB)

Supplementary file2 (DOCX 205 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chun, J., So, KK., Ko, YH. et al. Molecular characteristics of a novel hypovirus from Trichoderma harzianum. Arch Virol 167, 233–238 (2022). https://doi.org/10.1007/s00705-021-05253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05253-1

Navigation