Skip to main content

Advertisement

Log in

Rapid differential detection of subtype H1 and H3 swine influenza viruses using a TaqMan-MGB-based duplex one-step real-time RT-PCR assay

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Swine influenza is an economically important respiratory disease in swine, but it also constantly poses a threat to human health. Therefore, developing rapid, sensitive, and efficient detection methods for swine influenza virus (SIV) is important. By aligning the haemagglutinin (HA) gene sequences of SIVs circulating in China over a 10-year period, an H1 primer-probe set targeting both Eurasian avian-like H1N1 (EA H1N1) and pandemic 2009 H1N1 ((H1N1)pdm09) lineages plus a H3 primer-probe set targeting the prevalent human-like H3N2 (HL H3N2) subtype were designed. Subsequently, a TaqMan-MGB-based duplex one-step real-time RT-PCR (RT-qPCR) assay was established and evaluated. The duplex RT-qPCR has a detection limit of 5 copies/μL of HA plasmid for EA H1N1, (H1N1)pdm09, and HL H3N2 subtype SIVs, and its overall detection sensitivity of 100% and specificity of 91.67% matches that of traditional virus isolation through chicken embryo inoculation using experimentally infected mouse lung samples. The method showed high repeatability both within run and between runs, and there was no cross-reactivity against several other porcine viruses that are commonly circulating in China. Furthermore, the duplex RT-qPCR method revealed a higher prevalence of subtype H1 than subtype H3 in 166 nasal swabs from pigs collected from one slaughterhouse between October and December 2019. This assay could be very helpful in the rapid differential detection and routine surveillance of EA H1N1, (H1N1)pdm09, and HL H3N2 SIVs in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sun YF, Wang XH, Li XL, Zhang L, Li HH, Lu C, Yang CL, Feng J, Han W, Ren WK, Tian XX, Tong GZ, Wen F, Li ZJ, Gong XQ, Liu XM, Ruan BY, Yan MH, Yu H (2016) Novel triple-reassortant H1N1 swine influenza viruses in pigs in Tianjin, Northern China. Vet Microbiol 183:85–91. https://doi.org/10.1016/j.vetmic.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  2. Ruan BY, Wen F, Gong XQ, Liu XM, Wang Q, Yu LX, Wang SY, Zhang P, Yang HM, Shan TL, Zheng H, Zhou YJ, Tong W, Gao F, Tong GZ, Yu H (2018) Protective efficacy of a high-growth reassortant H1N1 influenza virus vaccine against the European Avian-like H1N1 swine influenza virus in mice and pigs. Vet Microbiol 222:75–84. https://doi.org/10.1016/j.vetmic.2018.07.003

    Article  CAS  PubMed  Google Scholar 

  3. Van Reeth K, Nauwynck H, Pensaert M (1996) Dual infections of feeder pigs with porcine reproductive and respiratory syndrome virus followed by porcine respiratory coronavirus or swine influenza virus: a clinical and virological study. Vet Microbiol 48(3–4):325–335. https://doi.org/10.1016/0378-1135(95)00145-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. Van Reeth K, Nauwynck H, Pensaert M (2001) Clinical effects of experimental dual infections with porcine reproductive and respiratory syndrome virus followed by swine influenza virus in conventional and colostrum-deprived pigs. J Vet Med B Infect Dis Vet Public Health 48(4):283–292. https://doi.org/10.1046/j.1439-0450.2001.00438.x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lewis NS, Russell CA, Langat P, Anderson TK, Berger K, Bielejec F, Burke DF, Dudas G, Fonville JM, Fouchier RA, Kellam P, Koel BF, Lemey P, Nguyen T, Nuansrichy B, Peiris JM, Saito T, Simon G, Skepner E, Takemae N, Webby RJ, Van Reeth K, Brookes SM, Larsen L, Watson SJ, Brown IH, Vincent AL (2016) The global antigenic diversity of swine influenza A viruses. Elife 5:e12217. https://doi.org/10.7554/eLife.12217

    Article  PubMed  PubMed Central  Google Scholar 

  6. Yang H, Chen Y, Qiao C, He X, Zhou H, Sun Y, Yin H, Meng S, Liu L, Zhang Q, Kong H, Gu C, Li C, Bu Z, Kawaoka Y, Chen H (2016) Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses. Proc Natl Acad Sci USA 113(2):392–397. https://doi.org/10.1073/pnas.1522643113

    Article  CAS  PubMed  Google Scholar 

  7. Cai M, Huang J, Bu D, Yu Z, Fu X, Ji C, Zhou P, Zhang G (2018) Molecular evolution of H1N1 swine influenza in Guangdong, China, 2016–2017. Infect Genet Evol 60:103–108. https://doi.org/10.1016/j.meegid.2018.02.029

    Article  CAS  PubMed  Google Scholar 

  8. Sun H, Xiao Y, Liu J, Wang D, Li F, Wang C, Li C, Zhu J, Song J, Sun H, Jiang Z, Liu L, Zhang X, Wei K, Hou D, Pu J, Sun Y, Tong Q, Bi Y, Chang KC, Liu S, Gao GF, Liu J (2020) Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection. Proc Natl Acad Sci U S A 117(29):17204–17210. https://doi.org/10.1073/pnas.1921186117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li X, Guo L, Liu C, Cheng Y, Kong M, Yang L, Zhuang Z, Liu J, Zou M, Dong X, Su X, Gu Q (2019) Human infection with a novel reassortant Eurasian-avian lineage swine H1N1 virus in northern China. Emerg Microbes Infect 8(1):1535–1545. https://doi.org/10.1080/22221751.2019.1679611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lu J, Yi L, Jing Y, Tan H, Mai W, Song Y, Zou L, Liang L, Xiao H, Kang M, Wu J, Song T, Ke C (2019) A human infection with a novel reassortant H3N2 swine virus in China. J Infect 79(2):174–187. https://doi.org/10.1016/j.jinf.2019.04.015

    Article  PubMed  Google Scholar 

  11. Slomka MJ, Densham AL, Coward VJ, Essen S, Brookes SM, Irvine RM, Spackman E, Ridgeon J, Gardner R, Hanna A, Suarez DL, Brown IH (2010) Real time reverse transcription (RRT)-polymerase chain reaction (PCR) methods for detection of pandemic (H1N1) 2009 influenza virus and European swine influenza A virus infections in pigs. Influenza Other Respir Viruses 4(5):277–293. https://doi.org/10.1111/j.1750-2659.2010.00149.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fu G, Liu M, Zeng W, Pu J, Bi Y, Ma G, Liu J (2010) Establishment of a multiplex RT-PCR assay to detect different lineages of swine H1 and H3 influenza A viruses. Virus Genes 41(2):236–240. https://doi.org/10.1007/s11262-010-0508-1

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Z, Liu D, Hu J, Sun W, Liu K, Li J, Xu H, Liu J, He L, Jiang D, Gu M, Hu S, Wang X, Liu X, Liu X (2019) Multiplex one-step real-time PCR assay for rapid simultaneous detection of velogenic and mesogenic Newcastle disease virus and H5-subtype avian influenza virus. Arch Virol 164(4):1111–1119. https://doi.org/10.1007/s00705-019-04180-6

    Article  CAS  PubMed  Google Scholar 

  14. Monavari SH, Mollaie HR, Fazlalipour M (2014) Simultaneous detection of influenza viruses A, B, and swine origin influenza A using multiplex one-step real-time RT-PCR assay. Appl Biochem Biotechnol 172(2):984–992. https://doi.org/10.1007/s12010-013-0583-6

    Article  CAS  PubMed  Google Scholar 

  15. Akkutay AZ, Osterrieder N, Damiani A, Tischer BK, Borchers K, Alkan F (2014) Prevalence of equine gammaherpesviruses on breeding farms in Turkey and development of a TaqMan MGB real-time PCR to detect equine herpesvirus 5 (EHV-5). Arch Virol 159(11):2989–2995. https://doi.org/10.1007/s00705-014-2165-5

    Article  CAS  PubMed  Google Scholar 

  16. Tomás G, Hernández M, Marandino A, Panzera Y, Maya L, Hernández D, Pereda A, Banda A, Villegas P, Aguirre S, Pérez R (2012) Development and validation of a TaqMan-MGB real-time RT-PCR assay for simultaneous detection and characterization of infectious bursal disease virus. J Virol Methods 185(1):101–107. https://doi.org/10.1016/j.jviromet.2012.06.012

    Article  CAS  PubMed  Google Scholar 

  17. Liang H, Geng J, Bai S, Aimuguri A, Gong Z, Feng R, Shen X, Wei S (2019) TaqMan real-time PCR for detecting bovine viral diarrhea virus. Pol J Vet Sci 22(2):405–413. https://doi.org/10.24425/pjvs.2019.129300

    Article  CAS  PubMed  Google Scholar 

  18. Zhao G, Pan J, Gu X, Lu X, Li Q, Zhu J, Chen C, Duan Z, Xu Q, Wang X, Hu S, Liu W, Peng D, Liu X, Wang X, Liu X (2012) Isolation and phylogenetic analysis of avian-origin European H1N1 swine influenza viruses in Jiangsu, China. Virus Genes 44(2):295–300. https://doi.org/10.1007/s11262-011-0704-7

    Article  CAS  PubMed  Google Scholar 

  19. Zhao G, Fan Q, Zhong L, Li Y, Liu W, Liu X, Gao S, Peng D, Liu X (2012) Isolation and phylogenetic analysis of pandemic H1N1/09 influenza virus from swine in Jiangsu province of China. Res Vet Sci 93(1):125–132. https://doi.org/10.1016/j.rvsc.2011.06.009

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146(12):2275–2289. https://doi.org/10.1007/s007050170002

    Article  CAS  PubMed  Google Scholar 

  21. Vijaykrishna D, Poon LL, Zhu HC, Ma SK, Li OT, Cheung CL, Smith GJ, Peiris JS, Guan Y (2010) Reassortment of pandemic H1N1/2009 influenza A virus in swine. Science 328(5985):1529. https://doi.org/10.1126/science.1189132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen Y, Zhang J, Qiao C, Yang H, Zhang Y, Xin X, Chen H (2013) Co-circulation of pandemic 2009 H1N1, classical swine H1N1 and avian-like swine H1N1 influenza viruses in pigs in China. Infect Genet Evol 13:331–338. https://doi.org/10.1016/j.meegid.2012.09.021

    Article  PubMed  Google Scholar 

  23. Krog JS, Hjulsager CK, Larsen MA, Larsen LE (2017) Triple-reassortant influenza A virus with H3 of human seasonal origin, NA of swine origin, and internal A(H1N1) pandemic 2009 genes is established in Danish pigs. Influenza Other Respir Viruses 11(3):298–303. https://doi.org/10.1111/irv.12451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mirzaei SG, Shoushtari A, Nouri A (2020) Development and evaluation of real-time reverse transcription polymerase chain reaction test for quantitative and qualitative recognition of h5 subtype of avian influenza viruses. Arch Razi Inst 75(1):17–22. https://doi.org/10.22092/ari.2019.120821.1201

    Article  CAS  PubMed  Google Scholar 

  25. Zhang Z, Liu D, Sun W, Liu J, He L, Hu J, Gu M, Wang X, Liu X, Hu S, Chen S, Peng D, Liu X (2017) Multiplex one-step Real-time PCR by Taqman-MGB method for rapid detection of pan and H5 subtype avian influenza viruses. PLoS ONE 12(6):e0178634. https://doi.org/10.1371/journal.pone.0178634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hiromoto Y, Uchida Y, Takemae N, Hayashi T, Tsuda T, Saito T (2010) Real-time reverse transcription-PCR assay for differentiating the Pandemic H1N1 2009 influenza virus from swine influenza viruses. J Virol Methods 170(1–2):169–172. https://doi.org/10.1016/j.jviromet.2010.09.009

    Article  CAS  PubMed  Google Scholar 

  27. Nagarajan MM, Simard G, Longtin D, Simard C (2010) Single-step multiplex conventional and real-time reverse transcription polymerase chain reaction assays for simultaneous detection and subtype differentiation of Influenza A virus in swine. J Vet Diagn Investig 22(3):402–408. https://doi.org/10.1177/104063871002200309

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Project of China (2016YFD0500202-1), the Jiangsu Provincial Natural Science Fund for Excellent Young Scholars (BK20170068), the Special Financial Grant from the China Postdoctoral Science Foundation (2017T100410), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Jiangsu Qinglan Project, and the High-End Talent Support Program of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Gu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was performed in strict concordance with the Guide for the Care and Use of Laboratory Animals of the Ministry of Science and Technology of the People’s Republic of China. The animal experiment protocol was approved by the Jiangsu Province Administrative Committee for Laboratory Animals (approval no. SYXK-SU-2017-0044) and complied with the Guidelines of Jiangsu Laboratory Animal Welfare and Ethics of Jiangsu Administrative Committee of Laboratory Animals.

Additional information

Handling Editor: William G Dundon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18160 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Kong, M., Liu, J. et al. Rapid differential detection of subtype H1 and H3 swine influenza viruses using a TaqMan-MGB-based duplex one-step real-time RT-PCR assay. Arch Virol 166, 2217–2224 (2021). https://doi.org/10.1007/s00705-021-05127-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-021-05127-6

Navigation