Skip to main content

Advertisement

Log in

A colloidal gold test strip assay for the detection of African swine fever virus based on two monoclonal antibodies against P30

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

African swine fever (ASF), caused by African swine fever virus (ASFV), was first reported in Kenya in 1921, but an effective vaccine or antiviral drug is still not available for ASFV control. Rapid and effective diagnostics are key steps in managing ASF. We generated two monoclonal antibodies (MAbs) against the ASFV phosphoprotein P30 and designated these as 3H7A7 and 6H9A10. Epitope mapping revealed that MAb 3H7A7 and 6H9A10 recognized aa 144-154 and aa 12-18 of P30, respectively. A signal-amplified sandwich colloidal gold test strip for rapid detection of ASFV was developed based using these MAbs. Sensitivity and specificity analysis showed that the detection limit of the strip was 2.16 ng of P30. The strip only reacted with ASFV and did not react with other common porcine viruses. In detection tests using 153 clinical field samples including sera, plasma, anticoagulant-treated blood, and tissue, the strip had 95.42% concordance with real-time PCR. The new MAbs specific for P30 and the rapid colloidal gold test strip helped to reveal novel B cell epitopes in P30 and provide an efficient diagnostic test for on-site clinical detection of ASF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sanchez-Vizcaino JM, Mur L, Gomez-Villamandos JC, Carrasco L (2015) An update on the epidemiology and pathology of African swine fever. J Comp Pathol 152(1):9–21. https://doi.org/10.1016/j.jcpa.2014.09.003

    Article  CAS  PubMed  Google Scholar 

  2. Sanchez-Cordon PJ, Montoya M, Reis AL, Dixon LK (2018) African swine fever: a re-emerging viral disease threatening the global pig industry. Vet J 233:41–48. https://doi.org/10.1016/j.tvjl.2017.12.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dixon LK, Sun H, Roberts H (2019) African swine fever. Antivir Res 165:34–41. https://doi.org/10.1016/j.antiviral.2019.02.018

    Article  CAS  PubMed  Google Scholar 

  4. Rowlands RJ, Michaud V, Heath L, Hutchings G, Oura C, Vosloo W, Dwarka R, Onashvili T, Albina E, Dixon LK (2008) African swine fever virus isolate, Georgia, 2007. Emerg Infect Dis 14(12):1870–1874. https://doi.org/10.3201/eid1412.080591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gogin A, Gerasimov V, Malogolovkin A, Kolbasov D (2013) African swine fever in the North Caucasus region and the Russian Federation in years 2007–2012. Virus Res 173(1):198–203. https://doi.org/10.1016/j.virusres.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  6. Kolbasov D, Titov I, Tsybanov S, Gogin A, Malogolovkin A (2018) African Swine fever virus, Siberia, Russia, 2017. Emerg Infect Dis 24(4):796–798. https://doi.org/10.3201/eid2404.171238

    Article  PubMed  PubMed Central  Google Scholar 

  7. Costard S, Mur L, Lubroth J, Sanchez-Vizcaino JM, Pfeiffer DU (2013) Epidemiology of African swine fever virus. Virus Res 173(1):191–197. https://doi.org/10.1016/j.virusres.2012.10.030

    Article  CAS  PubMed  Google Scholar 

  8. Gallardo C, Fernandez-Pinero J, Pelayo V, Gazaev I, Markowska-Daniel I, Pridotkas G, Nieto R, Fernandez-Pacheco P, Bokhan S, Nevolko O, Drozhzhe Z, Perez C, Soler A, Kolvasov D, Arias M (2014) Genetic variation among African Swine fever genotype II viruses, Eastern and Central Europe. Emerg Infect Dis 20(9):1544–1547. https://doi.org/10.3201/eid2009.140554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boklund A, Cay B, Depner K, Földi Z, Guberti V, Masiulis M, Miteva A, More S, Olsevskis E, Šatrán P, Spiridon M, Stahl K, Thulke HH, Viltrop A, Wozniakowski G, Broglia A, Cortinas Abrahantes J, Dhollander S, Gogin A, Verdonck F, Amato L, Papanikolaou A, Gortázar C (2018) Epidemiological analyses of African swine fever in the European Union (November 2017 until November 2018). EFSA J. https://doi.org/10.2903/j.efsa.2018.5494

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cwynar P, Stojkov J, Wlazlak K (2019) African Swine fever status in Europe. Viruses. https://doi.org/10.3390/v11040310

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ge S, Li J, Fan X, Liu F, Li L, Wang Q, Ren W, Bao J, Liu C, Wang H, Liu Y, Zhang Y, Xu T, Wu X, Wang Z (2018) Molecular characterization of African Swine Fever virus, China, 2018. Emerg Infect Dis 24(11):2131–2133. https://doi.org/10.3201/eid2411.181274

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhou X, Li N, Luo Y, Liu Y, Miao F, Chen T, Zhang S, Cao P, Li X, Tian K, Qiu HJ, Hu R (2018) Emergence of African Swine Fever in China, 2018. Transbound Emerg Dis 65(6):1482–1484. https://doi.org/10.1111/tbed.12989

    Article  PubMed  Google Scholar 

  13. Sanchez EG, Perez-Nunez D, Revilla Y (2019) Development of vaccines against African swine fever virus. Virus Res 265:150–155. https://doi.org/10.1016/j.virusres.2019.03.022

    Article  CAS  PubMed  Google Scholar 

  14. Teklue T, Sun Y, Abid M, Luo Y, Qiu HJ (2020) Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg Dis 67(2):529–542. https://doi.org/10.1111/tbed.13364

    Article  PubMed  Google Scholar 

  15. OIE (2020) World Organisation for Animals Health. Terrestrial Manual Chapter 3.8.1: African swine fever (Infection with African swine fever virus). https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.08.01_ASF.pdf. Accessed 12 Jun 2020

  16. Sastre P, Gallardo C, Monedero A, Ruiz T, Arias M, Sanz A, Rueda P (2016) Development of a novel lateral flow assay for detection of African swine fever in blood. BMC Vet Res 12:206. https://doi.org/10.1186/s12917-016-0831-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Afonso CL, Alcaraz C, Brun A, Sussman MD, Onisk DV, Escribano JM, Rock DL (1992) Characterization of p30, a highly antigenic membrane and secreted protein of African swine fever virus. Virology 189(1):368–373. https://doi.org/10.1016/0042-6822(92)90718-5

    Article  CAS  PubMed  Google Scholar 

  18. Dixon LK, Chapman DA, Netherton CL, Upton C (2013) African swine fever virus replication and genomics. Virus Res 173(1):3–14. https://doi.org/10.1016/j.virusres.2012.10.020

    Article  CAS  PubMed  Google Scholar 

  19. Alejo A, Matamoros T, Guerra M, Andres G (2018) A proteomic Atlas of the African swine fever virus particle. J Virol. https://doi.org/10.1128/JVI.01293-18

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kohler G, Milstein C (1976) Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur J Immunol 6(7):511–519. https://doi.org/10.1002/eji.1830060713

    Article  CAS  PubMed  Google Scholar 

  21. Myint O, Yoshida A, Sekiguchi S, Van Diep N, Fuke N, Izzati UZ, Hirai T, Yamaguchi R (2019) Development of indirect enzyme-linked immunosorbent assay for detection of porcine epidemic diarrhea virus specific antibodies (IgG) in serum of naturally infected pigs. BMC Vet Res 15(1):409. https://doi.org/10.1186/s12917-019-2123-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang X, Ren D, Li T, Zhou H, Liu X, Wang X, Lu H, Gao W, Wang Y, Zou X, Sun H, Ye J (2018) An emerging novel goose astrovirus associated with gosling gout disease, China. Emerg Microb Infect 7(1):152. https://doi.org/10.1038/s41426-018-0153-7

    Article  Google Scholar 

  23. Carrascosa AL, Bustos MJ, de Leon P (2011) Methods for growing and titrating African swine fever virus: field and laboratory samples. Curr Protoc Cell Biol. https://doi.org/10.1002/0471143030.cb2614s53

    Article  PubMed  Google Scholar 

  24. Yu X, Wei L, Chen H, Niu X, Dou Y, Yang J, Wang Z, Tang Y, Diao Y (2018) Development of colloidal gold-based immunochromatographic assay for rapid detection of goose parvovirus. Front Microbiol 9:953. https://doi.org/10.3389/fmicb.2018.00953

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tignon M, Gallardo C, Iscaro C, Hutet E, Van der Stede Y, Kolbasov D, De Mia GM, Le Potier MF, Bishop RP, Arias M, Koenen F (2011) Development and inter-laboratory validation study of an improved new real-time PCR assay with internal control for detection and laboratory diagnosis of African swine fever virus. J Virol Methods 178(1–2):161–170. https://doi.org/10.1016/j.jviromet.2011.09.007

    Article  CAS  PubMed  Google Scholar 

  26. Prados FJ, Vinuela E, Alcami A (1993) Sequence and characterization of the major early phosphoprotein p32 of African swine fever virus. J Virol 67(5):2475–2485

    Article  CAS  Google Scholar 

  27. Petrovan V, Yuan F, Li Y, Shang P, Murgia MV, Misra S, Rowland RRR, Fang Y (2019) Development and characterization of monoclonal antibodies against p30 protein of African swine fever virus. Virus Res 269:197632. https://doi.org/10.1016/j.virusres.2019.05.010

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was funded by the National Project for Prevention and Control of Transboundary Animal Diseases (Grant no. 2017YFD0501805), the National Key R&D Program for the 13th Five-Year Plan, and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Contributions

XZ and XL performed most of the work; XW provided the field samples, the ASFV SY18 strain, and workspace in the biosafety level III laboratory; WR and YZ were responsible for testing field samples; XX helped in material preparation; and HS gave experimental instruction.

Corresponding author

Correspondence to Xinyu Zhang.

Ethics declarations

Conflict of interest

All the authors declare that they have no competing interests regarding the publication of the data from this study.

Additional information

Handling Editor: Patricia Aguilar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Liu, X., Wu, X. et al. A colloidal gold test strip assay for the detection of African swine fever virus based on two monoclonal antibodies against P30. Arch Virol 166, 871–879 (2021). https://doi.org/10.1007/s00705-020-04915-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04915-w

Navigation