Skip to main content

Advertisement

Log in

Phosphatidylinositol-3-kinase-Akt pathway in negative-stranded RNA virus infection: a minireview

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The PI3K/Akt signalling pathway is a crucial signalling cascade that regulates transcription, protein translation, cell growth, proliferation, cell survival, and metabolism. During viral infection, viruses exploit a variety of cellular pathways, including the well-known PI3K/Akt signalling pathway. Conversely, cells rely on this pathway to stimulate an antiviral response. The PI3K/Akt pathway is manipulated by a number of viruses, including DNA and RNA viruses and retroviruses. The aim of this review is to provide up-to-date information about the role of the PI3K-Akt pathway in infection with members of five different families of negative-sense ssRNA viruses. This pathway is hijacked for viral entry, regulation of endocytosis, suppression of premature apoptosis, viral protein expression, and replication. Although less common, the PI3K/Akt pathway can be downregulated as an immunomodulatory strategy or as a mechanism for inducing autophagy. Moreover, the cell activates this pathway as an antiviral strategy for interferon and cytokine production, among other strategies. Here, we present new data concerning the role of this pathway in infection with the paramyxovirus Newcastle disease virus (NDV). Our data seem to indicate that NDV uses the PI3K/Akt pathway to delay cell death and increase cell survival as a means of improving its replication. The interference of negative-sense ssRNA viruses with this essential pathway might have implications for the development of antiviral therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAD:

Bcl-2-associated death promoter

FOXO:

Forkhead box O1 protein

GSK3:

Glycogen synthase kinase 3

INPP4B:

Inositol polyphosphate 4-phosphatase type II

mTORC2:

Mammalian target of rapamycin complex 2

PDK-1:

Phosphoinositide-dependent kinase 1

PH:

Pleckstrin homology

PHLPP:

PH domain leucine-rich repeat protein phosphatase

PI3K:

Phosphoinositide 3-kinase

PI(3,4)P2=PIP2:

Phosphatidylinositol 3,4-bisphosphate

PI(3,4,5)P3=PIP3:

Phosphatidylinositol 3,4,5-trisphosphate

PKB:

Protein kinase B

PP2A:

Protein phosphatase 2A

PTEN:

Phosphatase and tensin homologue deleted on chromosome 10

SHIP:

Src homology 2 (SH2)-containing inositol 5-phosphatase

ssRNA:

Single-stranded RNA

References

  1. Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11:329–341. https://doi.org/10.1038/nrm2882

    Article  CAS  PubMed  Google Scholar 

  2. Vanhaesebroeck B, Stephens L, Hawkins P (2012) PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol 13:195–203. https://doi.org/10.1038/nrm3290

    Article  CAS  PubMed  Google Scholar 

  3. Manning BD, Toker A (2017) AKT/PKB signaling: navigating the network. Cell 169:381–405. https://doi.org/10.1016/j.cell.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hawkins PT, Stephens LR (2016) Emerging evidence of signalling roles for PI(3,4)P2 in Class i and II PI3K-regulated pathways. Biochem Soc Trans 44:307–314. https://doi.org/10.1042/BST20150248

    Article  CAS  PubMed  Google Scholar 

  5. Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science (80-) 275:665–668. https://doi.org/10.1126/science.275.5300.665

    Article  CAS  Google Scholar 

  6. Scheid MP, Huber M, Damen JE et al (2002) Phosphatidylinositol (3,4,5)P3 is essential but not sufficient for protein kinase B (PKB) activation; phosphatidylinositol (3,4)P2 is required for PKB phosphorylation at Ser-473. Studies using cells from SH2-containing inositol-5-phosphatase knockout mice. J Biol Chem 277:9027–9035. https://doi.org/10.1074/jbc.M106755200

    Article  CAS  PubMed  Google Scholar 

  7. Bellacosa A, Chan TO, Ahmed NN et al (1998) Akt activation by growth factors is a multiple-step process: the role of the PH domain. Oncogene 17:313–325. https://doi.org/10.1038/sj.onc.1201947

    Article  CAS  PubMed  Google Scholar 

  8. Thomas CC, Deak M, Alessi DR, Van Aalten DMF (2002) High-resolution structure of the pleckstrin homology domain of protein kinase B/Akt bound to phosphatidylinositol (3,4,5)-trisphosphate. Curr Biol 12:1256–1262. https://doi.org/10.1016/S0960-9822(02)00972-7

    Article  CAS  PubMed  Google Scholar 

  9. Stephens L, Anderson K, Stokoe D et al (1998) Prohtein kinase B kinases that mediate phosphatidylinositol 3,4,5- trisphosphate-dependent activation of protein kinase B. Science (80-) 279:710–714. https://doi.org/10.1126/science.279.5351.710

    Article  CAS  Google Scholar 

  10. Li H, Marshall AJ (2015) Phosphatidylinositol (3,4) bisphosphate-specific phosphatases and effector proteins: a distinct branch of PI3K signaling. Cell Signal 27:1789–1798. https://doi.org/10.1016/j.cellsig.2015.05.013

    Article  CAS  PubMed  Google Scholar 

  11. Reed DE, Shokat KM (2017) INPP4B and PTEN loss leads to PI-3,4-P2 accumulation and inhibition of PI3K in TNBC. Mol Cancer Res 15:765–775. https://doi.org/10.1158/1541-7786.MCR-16-0183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hanada M, Feng J, Hemmings BA (2004) Structure, regulation and function of PKB/AKT—a major therapeutic target. Biochim Biophys Acta Proteins Proteomics 1697:3–16. https://doi.org/10.1016/j.bbapap.2003.11.009

    Article  CAS  Google Scholar 

  13. Risso G, Blaustein M, Pozzi B et al (2015) Akt/PKB: one kinase, many modifications. Biochem J 468:203–214. https://doi.org/10.1042/BJ20150041

    Article  CAS  PubMed  Google Scholar 

  14. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science (80-). https://doi.org/10.1126/science.1106148

    Article  Google Scholar 

  15. Manning BD, Cantley LC (2007) AKT/PKB Signaling: navigating downstream. Cell 129:1261–1274. https://doi.org/10.1016/j.cell.2007.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maehama T, Dixon JE (1999) PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9:125–128. https://doi.org/10.1016/s0962-8924(99)01519-6

    Article  CAS  PubMed  Google Scholar 

  17. Eramo MJ, Mitchell CA (2016) Regulation of PtdIns(3,4,5)P3/Akt signalling by inositol polyphosphate 5-phosphatases. Biochem Soc Trans 44:240–252. https://doi.org/10.1042/BST20150214

    Article  CAS  PubMed  Google Scholar 

  18. Dyson JM, Fedele CG, Davies EM, Becanovic J, Mitchell CA (2012) Phosphoinositide phosphatases: just as important as the kinases. Subcell Biochem 58:215–279. https://doi.org/10.1007/978-94-007-3012-0_7

    Article  CAS  PubMed  Google Scholar 

  19. Gao T, Furnari F, Newton AC (2005) PHLPP: a phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell 18:13–24. https://doi.org/10.1016/j.molcel.2005.03.008

    Article  CAS  PubMed  Google Scholar 

  20. Kuo YC, Huang KY, Yang CH et al (2008) Regulation of phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55α regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J Biol Chem. https://doi.org/10.1074/jbc.M709585200

    Article  PubMed  PubMed Central  Google Scholar 

  21. Diehl N, Schaal H (2013) Make yourself at home: viral hijacking of the PI3K/Akt signaling pathway. Viruses 5:3192–3212. https://doi.org/10.3390/v5123192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cooray S (2004) The pivotal role of phosphatidylinositol 3-kinase-Akt signal transduction in virus survival. J Gen Virol 85:1065–1076. https://doi.org/10.1099/vir.0.19771-0

    Article  CAS  PubMed  Google Scholar 

  23. Ji W-T, Liu H (2008) PI3K-Akt signaling and viral infection. Recent Pat Biotechnol. https://doi.org/10.2174/187220808786241042

    Article  PubMed  Google Scholar 

  24. Buchkovich NJ, Yu Y, Zampieri CA, Alwine JC (2008) The TORrid affairs of viruses: effects of mammalian DNA viruses on the PI3K-Akt-mTOR signalling pathway. Nat Rev Microbiol 6:266–275. https://doi.org/10.1038/nrmicro1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dunn EF, Connor JH (2012) HijAkt: the PI3K/Akt pathway in virus replication and pathogenesis. Prog Mol Biol Transl Sci 106:223–250. https://doi.org/10.1016/B978-0-12-396456-4.00002-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shaw ML, Palese P (2013) Orthomyxoviridae. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 1151–1185

    Google Scholar 

  27. Ehrhardt C, Ludwig S (2009) A new player in a deadly game: influenza viruses and the PI3K/Akt signalling pathway. Cell Microbiol 11:863–871. https://doi.org/10.1111/j.1462-5822.2009.01309.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ehrhardt C, Marjuki H, Wolff T et al (2006) Bivalent role of the phosphatidylinositol-3-kinase (PI3K) during influenza virus infection and host cell defence. Cell Microbiol 8:1336–1348. https://doi.org/10.1111/j.1462-5822.2006.00713.x

    Article  CAS  PubMed  Google Scholar 

  29. Eierhoff T, Hrincius ER, Rescher U et al (2010) The epidermal growth factor receptor (EGFR) promotes uptake of influenza a viruses (IAV) into host cells. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1001099

    Article  PubMed  PubMed Central  Google Scholar 

  30. Denisova OV, Sod̈erholm S, Virtanen S et al (2014) Akt inhibitor MK2206 prevents influenza pH1N1 virus infection in vitro. Antimicrob Agents Chemother 58:3689–3696. https://doi.org/10.1128/AAC.02798-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hirata N, Suizu F, Matsuda-Lennikov M et al (2014) Inhibition of Akt kinase activity suppresses entry and replication of influenza virus. Biochem Biophys Res Commun 450:891–898. https://doi.org/10.1016/j.bbrc.2014.06.077

    Article  CAS  PubMed  Google Scholar 

  32. Fujioka Y, Tsuda M, Hattori T et al (2011) The Ras-PI3K signaling pathway is involved in clathrin-independent endocytosis and the internalization of influenza viruses. PLoS One. https://doi.org/10.1371/journal.pone.0016324

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fujioka Y, Satoh AO, Horiuchi K et al (2019) A peptide derived from phosphoinositide 3-kinase inhibits endocytosis and influenza virus infection. Cell Struct Funct 44:61–74. https://doi.org/10.1247/csf.19001

    Article  PubMed  Google Scholar 

  34. Marjuki H, Gornitzky A, Marathe BM et al (2011) Influenza A virus-induced early activation of ERK and PI3K mediates V-ATPase-dependent intracellular pH change required for fusion. Cell Microbiol 13:587–601. https://doi.org/10.1111/j.1462-5822.2010.01556.x

    Article  CAS  PubMed  Google Scholar 

  35. Kuss-Duerkop SK, Wang J, Mena I et al (2017) Influenza virus differentially activates mTORC1 and mTORC2 signaling to maximize late stage replication. PLoS Pathog 13(9):e1006635

    Article  Google Scholar 

  36. Zhirnov OP, Klenk HD (2007) Control of apoptosis in influenza virus-infected cells by up-regulation of Akt and p53 signaling. Apoptosis. https://doi.org/10.1007/s10495-007-0071-y

    Article  PubMed  Google Scholar 

  37. Shin YK, Liu Q, Tikoo SK et al (2007) Effect of the phosphatidylinositol 3-kinase/Akt pathway on influenza A virus propagation. J Gen Virol. https://doi.org/10.1099/vir.0.82483-0

    Article  PubMed  Google Scholar 

  38. Ehrhardt C, Wolff T, Pleschka S et al (2007) Influenza A virus NS1 protein activates the PI3K/Akt pathway to mediate antiapoptotic signaling responses. J Virol. https://doi.org/10.1128/jvi.02082-06

    Article  PubMed  PubMed Central  Google Scholar 

  39. Shin YK, Liu Q, Tikoo SK et al (2007) Influenza A virus NS1 protein activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by direct interaction with the p85 subunit of PI3K. J Gen Virol 88:13–18. https://doi.org/10.1099/vir.0.82419-0

    Article  CAS  PubMed  Google Scholar 

  40. Hale BG, Jackson D, Chen YH et al (2006) Influenza A virus NS1 protein binds p85β and activates phosphatidylinositol-3-kinase signaling. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.0606109103

    Article  PubMed  Google Scholar 

  41. Shin Y-K, Li Y, Liu Q et al (2007) SH3 binding motif 1 in influenza A virus NS1 protein is essential for PI3K/Akt signaling pathway activation. J Virol 81:12730–12739. https://doi.org/10.1128/jvi.01427-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matsuda M, Suizu F, Hirata N et al (2010) Characterization of the interaction of influenza virus NS1 with Akt. Biochem Biophys Res Commun 395:312–317. https://doi.org/10.1016/j.bbrc.2010.03.166

    Article  CAS  PubMed  Google Scholar 

  43. Jackson D, Killip MJ, Galloway CS et al (2010) Loss of function of the influenza A virus NS1 protein promotes apoptosis but this is not due to a failure to activate phosphatidylinositol 3-kinase (PI3K). Virology 396:94–105. https://doi.org/10.1016/j.virol.2009.10.004

    Article  CAS  PubMed  Google Scholar 

  44. Ayllon J, Hale BG, Garcia-Sastre A (2012) Strain-specific contribution of NS1-activated phosphoinositide 3-kinase signaling to influenza A virus replication and virulence. J Virol 86:5366–5370. https://doi.org/10.1128/jvi.06722-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun Y, Li C, Shu Y et al (2012) Inhibition of autophagy ameliorates acute lung injury caused by avian influenza A H5N1 infection. Sci Signal 5:1–13. https://doi.org/10.1126/scisignal.2001931

    Article  CAS  Google Scholar 

  46. Wang R, Zhu Y, Zhao J et al (2018) Autophagy promotes replication of influenza A virus in vitro. J Virol 93:1–17. https://doi.org/10.1128/jvi.01984-18

    Article  CAS  Google Scholar 

  47. Hrincius ER, Dierkes R, Anhlan D et al (2011) Phosphatidylinositol-3-kinase (PI3K) is activated by influenza virus vRNA via the pathogen pattern receptor Rig-I to promote efficient type I interferon production. Cell Microbiol 13:1907–1919. https://doi.org/10.1111/j.1462-5822.2011.01680.x

    Article  CAS  PubMed  Google Scholar 

  48. Guillot L, Le Goffic R, Bloch S et al (2005) Involvement of Toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 280:5571–5580. https://doi.org/10.1074/jbc.M410592200

    Article  CAS  PubMed  Google Scholar 

  49. Lamb RA, Parks GD (2013) Paramyxoviridae. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 957–995

    Google Scholar 

  50. Peters K, Chattopadhyay S, Sen GC (2008) IRF-3 activation by sendai virus infection is required for cellular apoptosis and avoidance of persistence. J Virol 82:3500–3508. https://doi.org/10.1128/jvi.02536-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. White CL, Chattopadhyay S, Sen GC (2011) Phosphatidylinositol 3-kinase signaling delays sendai virus-induced apoptosis by preventing XIAP degradation. J Virol 85:5224–5227. https://doi.org/10.1128/jvi.00053-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kang Y, Yuan R, Zhao X et al (2017) Transient activation of the PI3K/Akt pathway promotes Newcastle disease virus replication and enhances anti-apoptotic signaling responses. Oncotarget 8:23551–23563. https://doi.org/10.18632/oncotarget.15796

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bai Y, Chen Y, Hong X et al (2018) Newcastle disease virus enhances the growth-inhibiting and proapoptotic effects of temozolomide on glioblastoma cells in vitro and in vivo. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-29929-y

    Article  CAS  Google Scholar 

  54. Sun M, Fuentes SM, Timani K et al (2008) Akt plays a critical role in replication of nonsegmented negative-stranded RNA viruses. J Virol 82:105–114. https://doi.org/10.1128/jvi.01520-07

    Article  CAS  PubMed  Google Scholar 

  55. Yeon SH, Song MJ, Kang HR, Lee JY (2015) Phosphatidylinositol-3-kinase and Akt are required for RIG-I-mediated anti-viral signalling through cross-talk with IPS-1. Immunology 144:312–320. https://doi.org/10.1111/imm.12373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luthra P, Sun D, Wolfgang M, He B (2008) AKT1-dependent activation of NF-B by the L protein of parainfluenza virus 5. J Virol 82:10887–10895. https://doi.org/10.1128/jvi.00806-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sharma NR, Mani P, Nandwani N et al (2010) Reciprocal regulation of AKT and MAP kinase dictates virus-host cell fusion. J Virol 84:4366–4382. https://doi.org/10.1128/jvi.01940-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Avota E, Avots A, Niewiesk S et al (2001) Disruption of Akt kinase activation is important for immunosuppression induced by measles virus. Nat Med 7:725–731. https://doi.org/10.1038/89106

    Article  CAS  PubMed  Google Scholar 

  59. Carsillo M, Kim D, Niewiesk S (2010) Role of AKT kinase in measles virus replication. J Virol 84:2180–2183. https://doi.org/10.1128/jvi.01316-09

    Article  CAS  PubMed  Google Scholar 

  60. Avota E, Muller N, Klett M, Schneider-Schaulies S (2004) Measles virus interacts with and alters signal transduction in T-cell lipid rafts. J Virol 78:9552–9559. https://doi.org/10.1128/jvi.78.17.9552-9559.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Thomas KW, Monick MM, Staber JM et al (2002) Respiratory syncytial virus inhibits apoptosis and induces NF-κB activity through a phosphatidylinositol 3-kinase-dependent pathway. J Biol Chem 277:492–501. https://doi.org/10.1074/jbc.M108107200

    Article  CAS  PubMed  Google Scholar 

  62. Monick MM, Cameron K, Powers LS et al (2004) Sphingosine kinase mediates activation of extracellular signal-related kinase and Akt by respiratory syncytial virus. Am J Respir Cell Mol Biol 30:844–852. https://doi.org/10.1165/rcmb.2003-0424OC

    Article  CAS  PubMed  Google Scholar 

  63. Lindemans CA, Coffer PJ, Schellens IMM et al (2006) Respiratory syncytial virus inhibits granulocyte apoptosis through a phosphatidylinositol 3-kinase and NF-κB-dependent mechanism. J Immunol 176:5529–5537. https://doi.org/10.4049/jimmunol.176.9.5529

    Article  CAS  PubMed  Google Scholar 

  64. Bitko V, Shulyayeva O, Mazumder B et al (2007) Nonstructural proteins of respiratory syncytial virus suppress premature apoptosis by an NF- B-dependent, interferon-independent mechanism and facilitate virus growth. J Virol 81:1786–1795. https://doi.org/10.1128/jvi.01420-06

    Article  CAS  PubMed  Google Scholar 

  65. Dunn EF, Fearns R, Connor JH (2009) Akt inhibitor Akt-IV blocks virus replication through an Akt-independent mechanism. J Virol 83:11665–11672. https://doi.org/10.1128/jvi.01092-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Machado D, Pizzorno A, Hoffmann J et al (2018) Role of p53/NF-кB functional balance in respiratory syncytial virus-induced inflammation response. J Gen Virol 99:489–500. https://doi.org/10.1099/jgv.0.001040

    Article  CAS  PubMed  Google Scholar 

  67. Groskreutz DJ, Monick MM, Yarovinsky TO et al (2007) Respiratory syncytial virus decreases p53 protein to prolong survival of airway epithelial cells. J Immunol 179:2741–2747. https://doi.org/10.4049/jimmunol.179.5.2741

    Article  CAS  PubMed  Google Scholar 

  68. Muraro SP, De Souza GF, Gallo SW et al (2018) Respiratory syncytial virus induces the classical ROS-dependent NETosis through PAD-4 and necroptosis pathways activation. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-32576-y

    Article  CAS  Google Scholar 

  69. Lyles DS, Kuzmin IV, Rupprecht CE (2013) Rhabdoviridae. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Wolters Kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 885–922

    Google Scholar 

  70. Minami K, Tambe Y, Watanabe R et al (2007) Suppression of viral replication by stress-inducible GADD34 Protein via the mammalian serine/threonine protein kinase mTOR pathway. J Virol 81:11106–11115. https://doi.org/10.1128/jvi.01063-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Saeed MF, Kolokoltsov AA, Freiberg AN et al (2008) Phosphoinositide-3 kinase-akt pathway controls cellular entry of ebola virus. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1000141

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cheng CY, Huang WR, Chi PI et al (2015) Cell entry of bovine ephemeral fever virus requires activation of Src-JNK-AP1 and PI3K-Akt-NF-κB pathways as well as Cox-2-mediated PGE2/EP receptor signalling to enhance clathrin-mediated virus endocytosis. Cell Microbiol 17:967–987. https://doi.org/10.1111/cmi.12414

    Article  CAS  PubMed  Google Scholar 

  73. Dunn EF, Connor JH (2011) Dominant inhibition of Akt/protein kinase B signaling by the matrix protein of a negative-strand RNA virus. J Virol 85:422–431. https://doi.org/10.1128/jvi.01671-10

    Article  CAS  PubMed  Google Scholar 

  74. Schabbauer G, Luyendyk J, Crozat K et al (2008) TLR4/CD14-mediated PI3K activation is an essential component of interferon-dependent VSV resistance in macrophages. Mol Immunol 45:2790–2796. https://doi.org/10.1016/j.molimm.2008.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shelly S, Lukinova N, Bambina S et al (2009) Autophagy is an essential component of drosophila immunity against vesicular stomatitis virus. Immunity 30:588–598. https://doi.org/10.1016/j.immuni.2009.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu J, Wang H, Gu J et al (2017) BECN1-dependent CASP2 incomplete autophagy induction by binding to rabies virus phosphoprotein. Autophagy 13:739–753. https://doi.org/10.1080/15548627.2017.1280220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Feldmann H, Sanchez A, Geisbert TW (2013) Filoviridae: Marburg and ebola viruses. In: Fields virology, 6th edn

  78. Nanbo A, Imai M, Watanabe S et al (2010) Ebolavirus is internalized into host cells via macropinocytosis in a viral glycoprotein-dependent manner. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1001121

    Article  PubMed  PubMed Central  Google Scholar 

  79. Stark A, Sriskantharajah S, Hessel EM, Okkenhaug K (2015) PI3K inhibitors in inflammation, autoimmunity and cancer. Curr Opin Pharmacol 23:82–91. https://doi.org/10.1016/j.coph.2015.05.017.PI3K

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Hsu ACY, Starkey MR, Hanish I et al (2015) Targeting PI3K-p110α suppresses influenza virus infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 191:1012–1023. https://doi.org/10.1164/rccm.201501-0188OC

    Article  CAS  PubMed  Google Scholar 

  81. Fujita A, Kan-o K, Tonai K et al (2020) Inhibition of PI3Kδ enhances poly I:C-induced antiviral responses and inhibits replication of human metapneumovirus in murine lungs and human bronchial epithelial cells. Front Immunol 11:1–19. https://doi.org/10.3389/fimmu.2020.00432

    Article  CAS  Google Scholar 

  82. Nayak MK, Agrawal AS, Bose S et al (2014) Antiviral activity of baicalin against influenza virus H1N1-pdm09 is due to modulation of NS1-mediated cellular innate immune responses. J Antimicrob Chemother 69:1298–1310. https://doi.org/10.1093/jac/dkt534

    Article  CAS  PubMed  Google Scholar 

  83. Sun Q, Wu R, Cai S et al (2011) Synthesis and biological evaluation of analogues of AKT (protein kinase B) inhibitor-IV. J Med Chem 54:1126–1139. https://doi.org/10.1021/jm100912b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Murray JL, McDonald NJ, Sheng J et al (2012) Inhibition of influenza A virus replication by antagonism of a PI3K-AKT-mTOR pathway member identified by gene-trap insertional mutagenesis. Antivir Chem Chemother 22:205–215. https://doi.org/10.3851/IMP2080

    Article  CAS  PubMed  Google Scholar 

  85. Smallwood HS, Duan S, Morfouace M et al (2017) Targeting metabolic reprogramming by influenza infection for therapeutic intervention. Cell Rep 19:1640–1653. https://doi.org/10.1016/j.celrep.2017.04.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chen WC, Liu L, Shen YF et al (2018) A new coumarin derivative plays a role in rhabdoviral clearance by interfering glycoprotein function during the early stage of viral infection. Cell Signal 51:199–210. https://doi.org/10.1016/j.cellsig.2018.08.007

    Article  CAS  PubMed  Google Scholar 

  87. Richart SM, Li YL, Mizushina Y et al (2018) Synergic effect of curcumin and its structural analogue (Monoacetylcurcumin) on anti-influenza virus infection. J Food Drug Anal 26:1015–1023. https://doi.org/10.1016/j.jfda.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  88. Li YC, Peng SZ, Chen HM et al (2012) Oral administration of patchouli alcohol isolated from Pogostemonis Herba augments protection against influenza viral infection in mice. Int Immunopharmacol 12:294–301. https://doi.org/10.1016/j.intimp.2011.12.007

    Article  CAS  PubMed  Google Scholar 

  89. Yu Y, Zhang Y, Wang S et al (2019) Inhibition effects of patchouli alcohol against influenza a virus through targeting cellular PI3K/Akt and ERK/MAPK signaling pathways. Virol J 16:1–16. https://doi.org/10.1186/s12985-019-1266-x

    Article  CAS  Google Scholar 

  90. Wu MS, Yen HR, Chang CW et al (2011) Mechanism of action of the suppression of influenza virus replication by Ko-Ken Tang through inhibition of the phosphatidylinositol 3-kinase/Akt signaling pathway and viral RNP nuclear export. J Ethnopharmacol 134:614–623. https://doi.org/10.1016/j.jep.2011.01.005

    Article  PubMed  Google Scholar 

  91. Wang QW, Su Y, Sheng JT et al (2018) Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways. PLoS One 13:1–19. https://doi.org/10.1371/journal.pone.0191793

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Adolfo García-Sastre for providing recombinant rNDV-F3aa-mRFP, NDV, and polyclonal anti-NDV antibodies. We also thank Emma Keck for revising the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Muñoz-Barroso.

Additional information

Handling editor: Bert K. Rima.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, J., Cameirao, C., López, M.C. et al. Phosphatidylinositol-3-kinase-Akt pathway in negative-stranded RNA virus infection: a minireview. Arch Virol 165, 2165–2176 (2020). https://doi.org/10.1007/s00705-020-04740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04740-1

Navigation