Skip to main content
Log in

Molecular characterization of a novel fusarivirus infecting the plant-pathogenic fungus Botryosphaeria dothidea

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A novel virus, Botryosphaeria dothidea fusarivirus 1 (BdFV1), was isolated from a fungal strain, SDAU11-86 of Botryosphaeria dothidea, and its complete genome sequence was determined. BdFV1 has a single-stranded positive-sense (+ssRNA) genome with 6,179 nucleotides, excluding the poly(A) tail. The genome of BdFV1 contains two putative open reading frames (ORFs). The first ORF encodes a large polyprotein of 1,544 amino acids (aa) with conserved RNA-dependent RNA polymerase and viral helicase domains. The second ORF encodes a putative 481-aa protein with unknown function. Sequence comparisons and phylogenetic analysis suggested that BdFV1 is a novel mycovirus belonging to the newly proposed family “Fusariviridae”. This is the first report of a +ssRNA mycovirus in B. dothidea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ghabrial SA, Castón JR, Jiang D et al (2015) 50-plus years of fungal viruses. Virology 479:356–368

    Article  Google Scholar 

  2. Xie J, Jiang D (2014) New insights into mycoviruses and exploration for the biological control of crop fungal diseases. Ann Rev Phytopathol 52:45–68

    Article  CAS  Google Scholar 

  3. Donaire L, Pagán I, Ayllón MA (2016) Characterization of Botrytis cinerea negative-stranded RNA virus 1, a new mycovirus related to plant viruses, and a reconstruction of host pattern evolution in negative-sense ssRNA viruses. Virology 499:212–218

    Article  CAS  Google Scholar 

  4. Liu L, Xie J, Cheng J et al (2014) Fungal negative-stranded RNA virus that is related to bornaviruses and nyaviruses. Proc Natl Acad Sci 111(33):12205–12210

    Article  CAS  Google Scholar 

  5. Marzano SYL, Nelson BD, Ajayi-Oyetunde O et al (2016) Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. J Virol 90(15):6846–6863

    Article  CAS  Google Scholar 

  6. Mu F, Xie J, Cheng S et al (2018) Virome characterization of a collection of S. sclerotiorum from Australia. Front Microbiol 8:2540

    Article  Google Scholar 

  7. Wang L, He H, Wang S et al (2018) Evidence for a novel negative-stranded RNA mycovirus isolated from the plant pathogenic fungus Fusarium graminearum. Virology 518:232–240

    Article  CAS  Google Scholar 

  8. Yu X, Li B, Fu Y et al (2010) A geminivirus-related DNA mycovirus that confers hypovirulence to a plant pathogenic fungus. Proc Natl Acad Sci 107(18):8387–8392

    Article  CAS  Google Scholar 

  9. King AMQ et al (2011) Virus taxonomy: ninth report of the International Committee on Taxonomy of viruses, vol 9. Elsevier, Amsterdam

    Google Scholar 

  10. Li K, Zheng D, Cheng J et al (2016) Characterization of a novel Sclerotinia sclerotiorum RNA virus as the prototype of a new proposed family within the order Tymovirales. Virus Res 219:92–99

    Article  CAS  Google Scholar 

  11. Hamid M, Xie J, Wu S et al (2018) A novel deltaflexivirus that infects the plant fungal pathogen, Sclerotinia sclerotiorum, can be transmitted among host vegetative incompatible strains. Viruses. 10(6):295

    Article  Google Scholar 

  12. Zhang R, Liu S, Chiba S et al (2014) A novel single-stranded RNA virus isolated from a phytopathogenic filamentous fungus, Rosellinia necatrix, with similarity to hypo-like viruses. Front Microbiol 5:360

    PubMed  PubMed Central  Google Scholar 

  13. Picarelli MASC, Forgia M, Rivas EB et al (2019) Extreme diversity of mycoviruses present in isolates of Rhizoctonia solani AG2-2 LP from Zoysia japonica from Brazil. Fronti Cell Infect Microbiol 9:244

    Article  CAS  Google Scholar 

  14. Dissanayake AJ, Phillips AJL, Li XH et al (2016) Botryosphaeriaceae: current status of genera and species. Mycosphere. 7(7):1001–1073

    Article  Google Scholar 

  15. Marsberg A, Kemler M, Jami F et al (2017) Botryosphaeria dothidea: a latent pathogen of global importance to woody plant health. Mol Plant Pathol 18(4):477–488

    Article  CAS  Google Scholar 

  16. Tang W, Ding Z, Zhou ZQ et al (2012) Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea. Plant Dis 96(4):486–496

    Article  CAS  Google Scholar 

  17. Xu C, Wang C, Ju L et al (2015) Multiple locus genealogies and phenotypic characters reappraise the causal agents of apple ring rot in China. Fungal Divers 71(1):215–231

    Article  CAS  Google Scholar 

  18. Zhai L, Zhang M, Lv G et al (2014) Biological and molecular characterization of four Botryosphaeria species isolated from pear plants showing stem wart and stem canker in China. Plant Dis 98(6):716–726

    Article  Google Scholar 

  19. Yan JY, Xie Y, Zhang W et al (2013) Species of Botryosphaeriaceae involved in grapevine dieback in China. Fungal Divers 61(1):221–236

    Article  Google Scholar 

  20. Liu X, Liu HX, Han XL et al (2018) First Report of Botryosphaeria dothidea causing fruit rot of Rellowhorn (Xanthoceras sorbifolium) in China. Plant Dis 102(8):1662

    Article  Google Scholar 

  21. Liu HX, Liang J, Zhao JP et al (2007) Study on the etiology of pomegranate canker diseases. Sci Silvae Sin 04:54–58

    Google Scholar 

  22. Zhang YL, Liu HX, Xu YY et al (2018) The tea brown blight disease caused by co-infection of Glomerella cingulata f. sp. camelliae and Botryosphaeria dothidea. J Tea Sci 38(01):87–93

    Google Scholar 

  23. Kang L, Hao H, Yang Z et al (2009) The advances in the research of apple ring rot. Chin Agric Sci Bull 25(09):188–191 (in Chinese)

    Google Scholar 

  24. Wang LP, Jiang JJ, Wang YF et al (2014) Hypovirulence of the phytopathogenic fungus Botryosphaeria dothidea: association with a coinfecting chrysovirus and a partitivirus. J Virol 88(13):7517–7527

    Article  Google Scholar 

  25. Zhai L, Xiang J, Zhang M et al (2016) Characterization of a novel double-stranded RNA mycovirus conferring hypovirulence from the phytopathogenic fungus Botryosphaeria dothidea. Virology. 493:75–85

    Article  CAS  Google Scholar 

  26. Ding Z, Zhou T, Guo LY (2017) Characterization of a novel strain of Botryosphaeria dothidea chrysovirus 1 from the apple white rot pathogen Botryosphaeria dothidea. Arch Virol 162(7):2097–2102

    Article  CAS  Google Scholar 

  27. Zhai L, Hong N, Zhang M et al (2015) Complete dsRNA sequence of a novel victorivirus isolated from the pear stem wart fungus Botryosphaeria dothidea. Arch Virol 160(2):613–616

    Article  CAS  Google Scholar 

  28. Zhai L, Yang M, Zhang M et al (2019) Characterization of a Botybirnavirus conferring hypovirulence in the phytopathogenic fungus Botryosphaeria dothidea. Viruses. 11(3):266

    Article  CAS  Google Scholar 

  29. Marais A, Nivault A, Faure C et al (2018) Molecular characterization of a novel fusarivirus infecting the plant-pathogenic fungus Neofusicoccum luteum. Arch Virol 163(2):559–562

    Article  CAS  Google Scholar 

  30. Choi YG, Randles JW (1997) Microgranular cellulose improves dsRNA recovery from plant nucleic acid extracts. BioTechniques. 23(4):610–611

    Article  CAS  Google Scholar 

  31. Cock PJA, Fields CJ, Goto N et al (2009) The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38(6):1767–1771

    Article  Google Scholar 

  32. Hansen KD, Brenner SE, Dudoit S (2010) Biases in Illumina transcriptome sequencing caused by random hexamer priming. Nucleic Acids Res 38(12):e131–e131

    Article  Google Scholar 

  33. Jiang L, Schlesinger F, Davis CA et al (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21(9):1543–1551

    Article  CAS  Google Scholar 

  34. Lambden PR, Cooke SJ, Caul EO et al (1992) Cloning of noncultivatable human rotavirus by single primer amplification. J Virol 66(3):1817–1822

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Huanting Liu (University of St Andrews, UK) for help in improving the manuscript.

Funding

This research was supported by the National Key R&D Program of China (2017YFD0600102-7 and 2017YFD0201103), the National Natural Science Foundation of China (31770684), and the Natural Science Foundation of Shandong Province (ZR2017MC042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixiang Liu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Ioly Kotta-Loizou.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 598 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Hai, D., Mu, F. et al. Molecular characterization of a novel fusarivirus infecting the plant-pathogenic fungus Botryosphaeria dothidea. Arch Virol 165, 1033–1037 (2020). https://doi.org/10.1007/s00705-020-04554-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-020-04554-1

Navigation