Skip to main content
Log in

Piperacillin and ceftazidime produce the strongest synergistic phage–antibiotic effect in Pseudomonas aeruginosa

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The combined use of phage and antibiotics can show synergistic antimicrobial effects, so-called phage–antibiotic synergy (PAS). Here, we screened and examined PAS against Pseudomonas aeruginosa in vitro. Testing four different phages infecting P. aeruginosa, phage KPP22 classified within the family Myoviridae genus Pbunavirus showed PAS with the widest range of antibiotics, and showed PAS with anti-Pseudomonas drugs such as piperacillin and ceftazidime. Thus, evidence suggests that the combined use of phage and antibiotics is a promising therapeutic strategy against P. aeruginosa infections, with consideration needed regarding the optimal selection and adequate application timing of these phages and antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S (2005) Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J Infect Chemother 11:211–219

    Article  PubMed  Google Scholar 

  2. Pires DP, Vilas Boas D, Sillankorva S, Azeredo J (2015) Phage therapy: a step forward in the treatment of Pseudomonas aeruginosa infections. J Virol 89:7449–7456

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Krylov VN (2014) Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy. Adv Virus Res 88:227–278

    Article  PubMed  CAS  Google Scholar 

  4. Aleshkin AV, Ershova ON, Volozhantsev NV, Svetoch EA, Popova AV, Rubalskii EO, Borzilov AI, Aleshkin VA, Afanas’ev SS, Karaulov AV, Galimzyanov KM, Rubalsky OV, Bochkareva SS (2016) Phagebiotics in treatment and prophylaxis of healthcare-associated infections. Bacteriophage 6:e1251379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sansom C (2015) Phage therapy for severe infections tested in the first multicentre trial. Lancet Infect Dis 15:1384–1385

    Article  PubMed  Google Scholar 

  6. Wright A, Hawkins CH, Anggard EE, Harper DR (2009) A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin Otolaryngol 34:349–357

    Article  PubMed  CAS  Google Scholar 

  7. Bedi MS, Verma V, Chhibber S (2009) Amoxicillin and specific bacteriophage can be used together for eradication of biofilm of Klebsiella pneumoniae B5055. World J Microbiol Biotechnol 25:1145–1151

    Article  CAS  Google Scholar 

  8. Kamal F, Dennis JJ (2015) Burkholderia cepacia complex Phage-Antibiotic Synergy (PAS): antibiotics stimulate lytic phage activity. Appl Environ Microbiol 81:1132–1138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chhibber S, Kaur T, Sandeep K (2013) Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One 8:e56022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Rahman M, Kim S, Kim SM, Seol SY, Kim J (2011) Characterization of induced Staphylococcus aureus bacteriophage SAP-26 and its anti-biofilm activity with rifampicin. Biofouling 27:1087–1093

    Article  PubMed  CAS  Google Scholar 

  11. Kirby AE (2012) Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One 7:e51017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Comeau AM, Tetart F, Trojet SN, Prere MF, Krisch HM (2007) Phage-Antibiotic Synergy (PAS): beta-lactam and quinolone antibiotics stimulate virulent phage growth. PLoS One 2:e799

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Ryan EM, Alkawareek MY, Donnelly RF, Gilmore BF (2012) Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol Med Microbiol 65:395–398

    Article  PubMed  CAS  Google Scholar 

  14. Knezevic P, Curcin S, Aleksic V, Petrusic M, Vlaski L (2013) Phage-antibiotic synergism: a possible approach to combatting Pseudomonas aeruginosa. Res Microbiol 164:55–60

    Article  PubMed  CAS  Google Scholar 

  15. Kaur S, Harjai K, Chhibber S (2012) Methicillin-resistant Staphylococcus aureus phage plaque size enhancement using sublethal concentrations of antibiotics. Appl Environ Microbiol 78:8227–8233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ventola CL (2015) The antibiotic resistance crisis: part 2: management strategies and new agents. Pharm Ther 40:344–352

    Google Scholar 

  17. Viertel TM, Ritter K, Horz HP (2014) Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother 69:2326–2336

    Article  PubMed  CAS  Google Scholar 

  18. Chaudhry WN, Concepcion-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR (2017) Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS One 12:e0168615

    Article  PubMed  PubMed Central  Google Scholar 

  19. Torres-Barcelo C, Hochberg ME (2016) Evolutionary Rationale for Phages as Complements of Antibiotics. Trends Microbiol 24:249–256

    Article  PubMed  CAS  Google Scholar 

  20. Yamaguchi K, Miyata R, Shigehisa R, Uchiyama J, Takemura-Uchiyama I, Kato S, Ujihara T, Sakaguchi Y, Daibata M, Matsuzaki S (2014) Genome analysis of Pseudomonas aeruginosa bacteriophage KPP23, belonging to the family Siphoviridae. Genome Announc 2:233–234

    Article  Google Scholar 

  21. Uchiyama J, Suzuki M, Nishifuji K, Kato S, Miyata R, Nasukawa T, Yamaguchi K, Takemura-Uchiyama I, Ujihara T, Shimakura H, Murakami H, Okamoto N, Sakaguchi Y, Shibayama K, Sakaguchi M, Matsuzaki S (2016) Analyses of short-term antagonistic evolution of Pseudomonas aeruginosa strain PAO1 and phage KPP22 (Myoviridae family, PB1-like virus genus). Appl Environ Microbiol 82:4482–4491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Shigehisa R, Uchiyama J, Kato S, Takemura-Uchiyama I, Yamaguchi K, Miyata R, Ujihara T, Sakaguchi Y, Okamoto N, Shimakura H, Daibata M, Sakaguchi M, Matsuzaki S (2016) Characterization of Pseudomonas aeruginosa phage KPP21 belonging to family Podoviridae genus N4-like viruses isolated in Japan. Microbiol Immunol 60:64–67

    Article  PubMed  CAS  Google Scholar 

  23. Miyata R, Yamaguchi K, Uchiyama J, Shigehisa R, Takemura-Uchiyama I, Kato S, Ujihara T, Sakaguchi Y, Daibata M, Matsuzaki S (2014) Characterization of a novel Pseudomonas aeruginosa bacteriophage, KPP25, of the family Podoviridae. Virus Res 189:43–46

    Article  PubMed  CAS  Google Scholar 

  24. Uchiyama J, Rashel M, Takemura I, Kato S, Ujihara T, Muraoka A, Matsuzaki S, Daibata M (2012) Genetic characterization of Pseudomonas aeruginosa bacteriophage KPP10. Arch Virol 157:733–738

    Article  PubMed  CAS  Google Scholar 

  25. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458

    Article  PubMed  CAS  Google Scholar 

  26. Merabishvili M, Pirnay JP, Verbeken G, Chanishvili N, Tediashvili M, Lashkhi N, Glonti T, Krylov V, Mast J, Van Parys L, Lavigne R, Volckaert G, Mattheus W, Verween G, De Corte P, Rose T, Jennes S, Zizi M, De Vos D, Vaneechoutte M (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 4:e4944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Giamarellou H (2002) Prescribing guidelines for severe Pseudomonas infections. J Antimicrob Chemother 49:229–233

    Article  PubMed  CAS  Google Scholar 

  28. O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp (47):2437. https://doi.org/10.3791/2437

  29. Stanley P (1976) Isolation and characterization of phages for Ancalomicrobium adetum. J Gen Virol 32:37–43

    Article  Google Scholar 

  30. Torres-Barcelo C, Franzon B, Vasse M, Hochberg ME (2016) Long-term effects of single and combined introductions of antibiotics and bacteriophages on populations of Pseudomonas aeruginosa. Evol Appl 9:583–595

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Torres-Barcelo C, Arias-Sanchez FI, Vasse M, Ramsayer J, Kaltz O, Hochberg ME (2014) A window of opportunity to control the bacterial pathogen Pseudomonas aeruginosa combining antibiotics and phages. PLoS One 9:e106628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Nouraldin AAM, Baddour MM, Harfoush RAH, Essa SAAM (2016) Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Bull Alexandria Fac 52:99–105

    Google Scholar 

  33. Chan BK, Abedon ST, Loc-Carrillo C (2013) Phage cocktails and the future of phage therapy. Future Microbiol 8:769–783

    Article  PubMed  CAS  Google Scholar 

  34. Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, Resch G, Que YA (2017) Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis 215:703–712

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Grant-in-Aid for Young Scientists (15K19095) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jumpei Uchiyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research ethics

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Horst Neve.

J. Uchiyama and R. Shigehisa contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 780 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchiyama, J., Shigehisa, R., Nasukawa, T. et al. Piperacillin and ceftazidime produce the strongest synergistic phage–antibiotic effect in Pseudomonas aeruginosa. Arch Virol 163, 1941–1948 (2018). https://doi.org/10.1007/s00705-018-3811-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-018-3811-0

Navigation