Skip to main content

Advertisement

Log in

Picornaviridae—the ever-growing virus family

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Picornaviruses are small, nonenveloped, icosahedral RNA viruses with positive-strand polarity. Although the vast majority of picornavirus infections remain asymptomatic, many picornaviruses are important human and animal pathogens and cause diseases that affect the central nervous system, the respiratory and gastrointestinal tracts, heart, liver, pancreas, skin and eye. A stunning increase in the number of newly identified picornaviruses in the past decade has shown that picornaviruses are globally distributed and infect vertebrates of all classes. Moreover, picornaviruses exhibit a surprising diversity of both genome sequences and genome layouts, sometimes challenging the definition of taxonomic relevant criteria. At present, 35 genera comprising 80 species and more than 500 types are acknowledged. Fifteen species within five new and three existing genera have been proposed in 2017, but more than 50 picornaviruses still remain unassigned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ambros V, Baltimore D (1978) Protein is linked to the 5′-end of poliovirus RNA by phosphodiester linkage to tyrosine. J Biol Chem 253:5263–5266

    CAS  PubMed  Google Scholar 

  2. Andino R, Rieckhof GE, Baltimore D (1990) A functional ribonucleoprotein complex forms around the 5′ end of poliovirus RNA. Cell 63:369–380

    Article  CAS  PubMed  Google Scholar 

  3. Baltimore D, Franklin RM, Eggers HJ, Tamm I (1963) Polio-induced RNA polymerase and the effects of virus-specific inhibitors on its production. Proc Natl Acad Sci USA 49:843–849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bardina MV, Lidsky PV, Sheval EV, Fominykh KV, van Kuppeveld FJM, Polyakov VY, Agol VI (2009) Mengovirus-induced rearrangement of the nuclear pore complex: Hijacking cellular phosphorylation machinery. J Virol 83(7):3150–3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Basavappa R, Syed R, Flore O, Icenogle JP, Filman DJ, Hogle JM (1994) Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure for the empty capsid assembly intermediate at 2.9 Å resolution. Protein Sci 3:1651–1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bird SW, Maynard ND, Covert MW, Kirkegaard K (2014) Nonlytic viral spread enhanced by autophagy components. Proc Natl Acad Sci USA 111:13081–13086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Borghese F, Michiels T (2011) The leader protein of cardioviruses inhibits stress granule assembly. J Virol 85(18):9614–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Boros A, Pankovics P, Adonyi A, Fenyvesi H, Day JM, Phan TG, Delwart E, Reuter G (2015) A diarrheic chicken simultaneously co-infected with multiple picornaviruses: Complete genome analysis of avian picornaviruses representing up to six genera. Virology 489:63–74

    Article  PubMed  CAS  Google Scholar 

  9. Boros A, Pankovics P, Knowles NJ, Nemes C, Delwart E, Reuter G (2014) Comparative complete genome analysis of chicken and turkey megriviruses (family Picornaviridae): long 3′ untranslated regions with a potential second open reading frame and evidence of possible recombination. J Virology 88(11):6434–6443

    Article  PubMed  PubMed Central  Google Scholar 

  10. Boros A, Pankovics P, Knowles NJ, Reuter G (2012) Natural interspecies recombinant bovine/porcine enterovirus in sheep. J Gen Virol 93:1941–1951

    Article  CAS  PubMed  Google Scholar 

  11. Boros A, Pankovics P, Matics R, Adonyi A, Bolba N, Phan TG, Delwart E, Reuter G (2017) Genome characterization of a novel megrivirus-related avian picornavirus from a carnivorous wild bird, western marsh harrier (Circus aeruginosus). Arch Virol. doi:10.1007/s00705-017-3403-4

    Google Scholar 

  12. Bunke J, Receveur K, Oeser AC, Fickenscher H, Zell R, Krumbholz A (2017) High genetic diversity of porcine enterovirus G in Schleswig-Holstein, Germany. Arch Virol. doi:10.1007/s00705-017-3612-x

    PubMed  Google Scholar 

  13. Chen YH, Du W, Hagemeijer MC, Takvorian PM, Pau C, Cali A, Brantner CA, Stempinski ES, Connelly PS, Ma HC, Jiang P, Wimmer E, Altan-Bonnet G, Altan-Bonnet N (2015) Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 160:619–630

    Article  CAS  PubMed  Google Scholar 

  14. Devaney MA, Vakharia VN, Lloyd RE, Ehrenfeld E, Grubman MJ (1988) Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J Virol 62:4407–4409

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ding C, Zhang D (2007) Molecular analysis of duck hepatitis virus type 1. Virology 361:9–17

    Article  CAS  PubMed  Google Scholar 

  16. Donnelly MLL, Luke G, Mehrota A, Li X, Hughes LE, Gani D, Ryan MD (2001) Analysis of the aphthovirus 2A/2B polyprotein ‘cleavage’ mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal ‘skip’. J Gen Virol 82:1013–1025

    Article  CAS  PubMed  Google Scholar 

  17. Dorsch-Haesler K, Yogo Y, Wimmer E (1975) Replication of picornaviruses. I. Evidence from in vitro RNA synthesis that poly(A) of the poliovirus genome is genetically coded. J Virol 16:1512–1517

    Google Scholar 

  18. Du J, Lu L, Liu F, Su H, Dong J, Sun L, Zhu Y, Ren X, Yang F, Guo F, Liu Q, Wu Z, Jin Q (2016) Distribution and characteristics of rodent picornaviruses in Chin. Sci Rep 6:34381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fendrick AM, Monto AS, Nightengale B, Sarnes M (2003) The economic burden of non-influenza-related viral respiratory tract infections in the United States. Arch Intern Med 163:487–494

    Article  PubMed  Google Scholar 

  20. Feng Z, Hensley L, McKnight KL, Hu F, Madden V, Ping L, Jeong SH, Walker C, Lanford RE, Lemon SM (2013) A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496:367–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Finch JT, Klug A (1959) Structure of poliomyelitis virus. Nature 183:1709–1714

    Article  CAS  PubMed  Google Scholar 

  22. Firth C, Bhat M, Firth MA, Williams SH, Frye MJ, Simmonds P, Conte JM, Ng J, Garcia J, Bhuva NP, Lee B, Che X, Quan PL, Lipkin WI (2014) Detection of zoonotic pathogens and characterizsation of novel viruses carried by commensal Rattus norvegicus in New York City. mBio 5:e01933-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Flanegan JB, Pettersson RF, Ambros V, Hewlett MJ, Baltimore D (1977) Covalent linkage of a protein to a defined nucleotide sequence at the 5′-terminus of virion and replicative intermediate RNAs of poliovirus. Proc Natl Acad Sci USA 74:961–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gaunt E, Harvala H, Österback R, Sreenu AB, Thomson E, Waris M, Simmonds P (2015) Genetic characterization of human coxsackievirus A6 variants associated with atypical hand, foot and mouth disease: a potential role of recombination in emergence and pathogenicity. J Gen Virol 96:1067–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators (2016) Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388(10053):1545–1602

    Article  Google Scholar 

  26. Grubman MJ, Baxt B (2004) Foot-and-mouth disease. Clin Microbiol Rev 17:465–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guarné A, Tormo J, Kirchweger R, Pfistermueller D, Fita I, Skern T (1998) Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J 17:7469–7479

    Article  PubMed  PubMed Central  Google Scholar 

  28. Guttman N, Baltimore D (1977) Morphogenesis of poliovirus. IV. Existence of particles sedimenting at 150S having the properties of provirions. J Virol 23:363–367

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Hindiyeh M, Li QH, Basavappa R, Hogle JM, Chow M (1999) Poliovirus mutants at histidine 195 of VP2 do not cleave VP0 into VP2 and VP4. J Virol 73:9072–9079

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hirst GK (1962) Genetic recombination with Newcastle disease virus, polioviruses and influenza. Cold Spring Harbor Symp Quant Biol 27:303–308

    Article  CAS  PubMed  Google Scholar 

  31. Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:1358–1365

    Article  CAS  PubMed  Google Scholar 

  32. Holland JJ, McLaren LC, Hoyer BH, Syverton JT (1960) Enteroviral ribonucleic acid. II. Biological, physical, and chemical studies. J Exp Med 112:841–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang T, Wang W, Bessaud M, Ren P, Sheng J, Yan H, Zhang J, Lin X, Wang Y, Delpeyroux F, Deubel V (2009) Evidence of recombination and genetic diversity in human rhinoviruses in children with acute respiratory infection. PLoS One 4(7):e6355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Hughes PJ, Stanway G (2000) The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev107 family of proteins involved in the control of cell proliferation. J Gen Virol 81:201–207

    Article  CAS  PubMed  Google Scholar 

  35. International Enterovirus Study Group, Melnick JL, Cockburn WC, Dalldorf G, Gard S, Gear JHS, Hammon WM, Kaplan MM, Nagler FP, Oker-Blom N, Rhodes AJ, Sabin AB, Verlinde JD, Von Magnus H (1963) Picornavirus group. Virology 19:114–116

    Article  Google Scholar 

  36. Jacobson MF, Baltimore D (1968) Polypeptide cleavages in the formation of poliovirus proteins. Proc Natl Acad Sci USA 61:77–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jan E, Mohr I, Walsh D (2016) A cap-to-tail guide to mRNA translation strategies in virus-infected cells. Annu Rev Virol 3(1):283–307

    Article  CAS  PubMed  Google Scholar 

  38. Kapoor A, Victoria J, Simmonds P, Slikas E, Chieochansin T, Naeem A, Shaukat S, Sharif S, Alam MM, Angez M, Wang C, Shafer RW, Zaidi S, Delwart E (2008) A highly prevalent and genetically diversified Picornaviridae genus in South Asian children. Proc Natl Acad Sci USA 105:20482–20487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kapusinszky B, Phan TG, Kapoor A, Delwart E (2012) Genetic diversity of the genus Cosavirus in the family Picornaviridae: a new species, recombination, and 26 new genotypes. PLoS One 7(5):e36685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Karrasch M, Fischer E, Scholten M, Sauerbrei A, Henke A, Renz DM, Mentzel HJ, Böer K, Böttcher S, Diedrich S, Krumbholz A, Zell R (2016) A severe pediatric infection with a novel enterovirus A71 strain, Thuringia, Germany. J Clin Virol 84:90–95

    Article  PubMed  Google Scholar 

  41. Kiehn ED, Holland JJ (1970) Synthesis and cleavage of enterovirus polypeptides in mammalian cells. J Virol 5:358–367

    CAS  PubMed  PubMed Central  Google Scholar 

  42. King AMQ, McCahon D, Slade WR, Newman JWI (1982) Recombination in RNA. Cell 29:921–928

    Article  CAS  PubMed  Google Scholar 

  43. Kirchweger R, Ziegler E, Lamphear BJ, Waters D, Liebig HD, Sommergruber W, Sobrino F, Hohenadl C, Blaas D, Rhoads RE, Skern T (1994) Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4 gamma. J Virol 68:5677–5684

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kirkegaard K, Baltimore D (1986) The mechanism of RNA recombination in poliovirus. Cell 47:433–443

    Article  CAS  PubMed  Google Scholar 

  45. Kluge M, Campos FS, Tavares M, de Amorim DB, Valdez FP, Giongo A, Roehe PM, Franco AC (2016) Metagenomic survey of viral diversity obtained from feces of subantarctic and South American fur seals. PLoS One 11:e0151921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Knutson TP, Velayudhan BT, Marthaler DG (2017) A porcine enterovirus G associated with enteric disease contains a novel papain-like cysteine protease. J Gen Virol 98:1305–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kofstad T, Jonassen CM (2011) Screening of feral and wood pigeons for viruses harbouring a conserved mobile viral element: characterization of novel astroviruses and picornaviruses. PLoS One 6:e25964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Krumbholz A, Egerer R, Braun H, Schmidtke M, Rimek D, Kroh C, Hennig B, Groth M, Sauerbrei A, Zell R (2016) Analysis of an echovirus 18 outbreak in Thuringia, Germany: insights into the molecular epidemiology and evolution of several enterovirus species B members. Med Microbiol Immunol 205:471–483

    Article  PubMed  Google Scholar 

  49. Lange J, Groth M, Fichtner D, Granzow H, Keller B, Walther M, Platzer M, Sauerbrei A, Zell R (2014) Virus isolate from carp: genetic characterization reveals a novel picornavirus with two ahphthovirus 2A-like sequences. J Gen Virol 95:80–90

    Article  CAS  PubMed  Google Scholar 

  50. Lau SK, Woo PC, Lai KK, Huang Y, Yip CC, Shek CT, Lee P, Lam CS, Chan KH, Yuen KY (2011) Complete genome analysis of three novel picornaviruses from diverse bat species. J Virol 85:8819–8828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lau SK, Woo PCY, Yip CCY, Choi GKY, Wu Y, Bai R, Fan RYY, Lai KKY, Chan KH, Yuen KY (2012) Identification of a novel feline picornavirus from the domestic cat. J Virol 86:395–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lau SK, Woo PC, Yip CC, Li KS, Fan RY, Bai R, Huang Y, Chan KH, Yuen KY (2014) Chickens host diverse picornaviruses originated from potential interspecies transmission with recombination. J Gen Virol 95:1929–1944

    Article  CAS  PubMed  Google Scholar 

  53. Ledinko N (1963) Genetic recombination with poliovirus type 1. Studies of crosses between a normal horse serum-resistant mutant and several guanidine-resistant mutants of the same strain. Virology 20:107–119

    Article  CAS  PubMed  Google Scholar 

  54. Lee YF, Nomoto A, Detjen BM, Wimmer E (1977) A protein covalently linked to poliovirus genome RNA. Proc Natl Acad Sci USA 74:59–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Li L, Kapoor A, Slikas B, Oderinde BS, Wang C, Shaukat S, Alam MM, Wilson ML, Ndjango JB, Peeters M, Gross-Camp ND, Muller MN, Hahn BH, Wolfe ND, Triki H, Bartkus J, Zaidi SZ, Delwart E (2010) Multiple diverse circoviruses infect farm animals and are commonly found in human and chimpanzee feces. J Virol 84:1674–1682

    Article  CAS  PubMed  Google Scholar 

  56. Li L, Shan T, Wang C, Cote C, Kolman J, Onions D, Gulland FM, Delwart E (2011) The fecal flora of California sea lions. J Virol 85:9909–9917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Li L, Victoria JG, Wang C, Jones M, Fellers GM, Kunz TH, Delwart E (2010) Bat guano virome: predominance of dietary viruses from insects and plants plus novel mammalian viruses. J Virol 84:6955–6965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liao Q, Zheng L, Yuan Y, Shi J, Zhang D (2014) Genomic characterization of a novel picornavirus in Pekin ducks. Vet Microbiol 172:78–91

    Article  CAS  PubMed  Google Scholar 

  59. Lim ES, Deem SL, Porton IJ, Cao S, Wang D (2015) Species-specific transmission of novel picornaviruses in lemurs. J Virol 89:4002–4010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lozano G, Fernandez N, Martinez-Salas E (2016) Modeling three-dimensional structural motifs of viral IRES. J Mol Biol 428(5):767–776

    Article  CAS  PubMed  Google Scholar 

  61. Lukashev AN (2010) Recombination among picornaviruses. Rev Med Virol 20(5):327–337

    Article  CAS  PubMed  Google Scholar 

  62. Lwoff A, Torunier P (1966) The classification of viruses. Annu Rev Microbiol 20:45–74

    Article  CAS  PubMed  Google Scholar 

  63. Maizel JV (1963) Evidence for multiple components in the structural protein of type 1 poliovirus. Biochem Biophys Res Commun 13:483–489

    Article  CAS  Google Scholar 

  64. Maizel JV, Summers DF (1968) Evidence for differences in size and composition of the poliovirus-specific polypeptides in infected HeLa cells. Virology 36:48–54

    Article  CAS  PubMed  Google Scholar 

  65. McIntyre CL, McWilliam Leitch EC, Savolainen-Kopra C, Hovi T, Simmonds P (2010) Analysis of genetic diversity and sites of recombination in human rhinovirus species C. J Virol 84(19):10297–10310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McIntyre CL, Knowles NJ, Simmonds P (2013) Proposals for the classification of human rhinovirus species A, B, and C into genotypically assigned types. J Gen Virol 94:1791–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. McIntyre CL, Savolainen-Kopra C, Hovi T, Simmonds P (2013) Recombination in the evolution of human rhinovirus genomes. Arch Virol 158:1497–1515

    Article  CAS  PubMed  Google Scholar 

  68. Nagai M, Omatsu T, Aoki H, Kaku Y, Belsham GJ, Haga K, Naoi Y, Sano K, Umetsu M, Shiokawa M, Tsuchiaka S, Furuya T, Okazaki S, Katayama Y, Oba M, Shirai J, Katayama K, Mizutani T (2015) Identification and complete genome analysis of a novel bovine picornavirus in Japan. Virus Res 210:205–212

    Article  CAS  PubMed  Google Scholar 

  69. Nagy PD, Strating JRPM, van Kuppeveld FJM (2016) Building viral replication organelles: close encounters of the membrane types. PLOS Pathog 12:e1005912

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Naoi Y, Kishimoto M, Masuda T, Ito M, Tsuchiaka S, Sano K, Yamasato H, Omatsu T, Aoki H, Furuya T, Katayama Y, Oba M, Okada T, Shirai J, Mizutani T, Nagai M (2016) Characterization and phylogenetic analysis of a novel picornavirus from swine feces in Japan. Arch Virol 161:1685–1690

    Article  CAS  PubMed  Google Scholar 

  71. Oberste MS, Maher K, Kilpatrick DR, Pallansch MA (1999) Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73:1941–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Oem JK, Lee MH, Lee KK, An DJ (2014) Novel kobuvirus species identified from black goat with diarrhea. Vet Microbiol 172:563–567

    Article  CAS  PubMed  Google Scholar 

  73. Palmenberg AC (1990) Proteolytic processing of picornaviral polyprotein. Annu Rev Microbiol 44:603–633

    Article  CAS  PubMed  Google Scholar 

  74. Pankovics P, Boros A, Reuter G (2012) Novel picornavirus in domesticated common quail (Coturnix coturnix) in Hungary. Arch Virol 157:525–530

    Article  CAS  PubMed  Google Scholar 

  75. Pankovics P, Boros A, Matics R, Kapusinszky B, Delwart E, Reuter G (2017) Ljungan/Sebokele-like picornavirus in birds of prey, common kestrel (Falco tinnunculus) and red-footed falcon (F. verspertinus). Inf Genet Evol 55:14–19

    Article  CAS  Google Scholar 

  76. Pankovics P, Boros A, Toth Z, Phan TG, Delwart E, Reuter G (2017) Genetic characterization of a second novel picornavirus from an amphibian host, smooth newt (Lissotriton vulgaris). Arch Virol 162:1043–1050

    Article  CAS  PubMed  Google Scholar 

  77. Paul AV, Wimmer E (2015) Initiation of protein-primed picornavirus RNA synthesis. Virus Res 206:12–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Phan TG, Vo NP, Boros A, Pankovics P, Reuter G, Li OTW, Wang C, Deng X, Poon LLM, Delwart E (2013) The viruses of wild pigeon droppings. PLOS One 8(9):e72787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Porter FW, Brown B, Palmenberg AC (2010) Nucleoporin phosphorylation triggered by the encephalomyocarditis virus leader protein is mediated by mitogen-activated protein kinases. J Virol 84(24):12538–12548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pringle (1965) Evidence of genetic recombination in foot-and-mouth disease virus. Virology 25:48–54

    Article  CAS  PubMed  Google Scholar 

  81. Reuter G, Boldizsar A, Pankovics P (2009) Complete nucleotide and amino acid sequences and genetic organization of porcine kobuvirus, a member of a new species in the genus Kobuvirus, family Picornaviridae. Arch Virol 154:101–108

    Article  CAS  PubMed  Google Scholar 

  82. Reuter G, Boros G, Földvari G, Szekeres S, Matics R, Kapusinszky B, Delwart E, Pankovics P (2017) Dicipivirus (family Picornaviridae) in wild Northern white-breasted hedgehog (Erinaceus roumanicus). Arch Virol. doi:10.1007/s00705-017-3565-0

    Google Scholar 

  83. Reuter G, Pankovics P, Knowles NJ, Boros A (2012) Two closely related novel picornaviruses in cattle and sheep in Hungary from 2008 to 2009, proposed as members of a new genus in the family Picornaviridae. J Virol 86:13295–13302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Robinson SC, Tsueng G, Sin J, Mangale V, Rahawi S, McIntyre LL, Williams W, Kha N, Cruz C, Hancock BM, Nguyen DP, Sayen MR, Hilton BJ, Doran KS, Segall AM, Wolkowicz R, Cornell CT, Whitton JL, Gottlieb RA, Feuer R (2014) Coxsackievirus B exits the host cell in shed microvesicles displaying autophagosomal markers. PLoS Pathog 10:e1004045

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Rossmann MG, Johnson JE (1989) Icosahedral RNA virus structure. Annu Rev Biochem 58:533–573

    Article  CAS  PubMed  Google Scholar 

  86. Rothberg P, Harris T, Nomoto A, Wimmer E (1978) The genome-linked protein of picornaviruses. V. O4-(5′uridylul)-tyrosine is the bond between the genome-linked protein and the RNA of poliovirus. Proc Natl Acad Sci USA 75:4868–4872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rueckert R, Wimmer E (1984) Systematic nomenclature of picornavirus proteins. J Virol 59:957–959

    Google Scholar 

  88. Schwerdt CE, Schaffer FL (1955) Some physical and chemical properties of purified poliomyelitis virus preparations. Ann N Y Acad Sci 61:740–750

    Article  CAS  PubMed  Google Scholar 

  89. Shang P, Misra S, Hause B, Fang Y (2017) A naturally occurring recombinant enterovirus expresses a torovirus deubiquitinase. J Virol 91:e00450-17

    Article  PubMed  PubMed Central  Google Scholar 

  90. Simmonds P, Adams MJ, Benko M, Breitbart M, Brister JR, Carstens EB, Davison AJ, Delwart E, Gorbalenya AE, Harrach B, Hull R, King AMQ, Koonin EV, Krupovic M, Kuhn JH, Lefkowitz EJ, Nibert ML, Orton R, Roossinck MJ, Sabanadzovic S, Sullivan MB, Suttle CA, Tesh RB, van der Vlugt RA, Varsani A, Zerbini FM (2017) Virus taxonomy in the age of metagenomics. Nat Rev Microbiol 15:161–168

    Article  CAS  PubMed  Google Scholar 

  91. Smura T, Blomqvist S, Paananen A, Vuorinen T, Sobotova Z, Bubovica V, Ivanova O, Hovi T, Roivainen M (2007) Enterovirus surveillance reveals proposed new serotypes and provides new insight into enterovirus 5′-untranslated region evolution. J Gen Virol 88:2520–2526

    Article  CAS  PubMed  Google Scholar 

  92. Stanway G, JokiKorpela P, Hyypiä T (2000) Human parechoviruses—biology and clinical significance. Rev Med Virol 10:57–69

    Article  CAS  PubMed  Google Scholar 

  93. Strating JRPM, van Kuppeveld FJM (2017) Viral rewiring of cellular lipid metabolism to create membranous replication compartments. Curr Opin Cell Biol 47:24–33

    Article  CAS  PubMed  Google Scholar 

  94. Summers DF, Maizel JV, Darnell JE (1965) Evidence for virus-specific noncapsid protein in poliovirus-infected HeLa cells. Proc Natl Acad Sci USA 54:505–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tapparel C, Siegrist F, Kaiser L (2013) Picornavirus and enterovirus diversity with associated human diseases. Infect Genet Evol 14:282–293

    Article  PubMed  Google Scholar 

  96. Tuthill TJ, Groppelli E, Hogle JM, Rowlands DJ (2010) Picornaviruses. Curr Top Microbiol Immunol 343:43–89

    CAS  PubMed  PubMed Central  Google Scholar 

  97. van der Schaar HM, Dorobantu CM, Albulescu L, Strating JRPM, van Kuppeveld FJM (2016) Fat(al) attraction: Picornaviruses usurp lipid transfer at membrane contact sites to create replication organelles. Trends Microbiol 24:535–546

    Article  PubMed  CAS  Google Scholar 

  98. Vaughan G, Goncalves Rossi LM, Forbi JC, de Paula VS, Purdy MA, Xia G, Khudyakov YE (2014) Hepatitis A virus: host interactions, molecular epidemiology and evolution. Infect Genet Evol 21:227–243

    Article  PubMed  Google Scholar 

  99. Wang M, He J, Lu H, Liu Y, Deng Y, Zhu L, Guo C, Tu C, Wang X (2017) A novel enterovirus species identified from severe diarrheal goats. PLoS One 12:e0174600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Wang F, Liang T, Liu N, Ning K, Yu K, Zhang D (2017) Genetic characterization of two novel megriviruses in geese. J Gen Virol 98:607–611

    Article  CAS  PubMed  Google Scholar 

  101. Wildy P (1971) Classification and nomenclature of viruses. First report of the International Committee on Nomenclature of Viruses. Monogr Virol 5:1–81

    Article  Google Scholar 

  102. Woo PCY, Lau SKP, Choi GKY, Huang Y, Teng JLL, Tsoi HW, Tse H, Yeung ML, Chan KH, Jin DY, Yuen KY (2012) Natural occurrence and characterization of two internal ribosome entry site elements in a novel virus, canine picodicistrovirus, in the picornavirus-like superfamily. J Virol 86:2797–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Woo PCY, Lau SK, Choi GK, Yip CC, Huang Y, Tsoi HW, Yuen KY (2012) Complete genome sequence of a novel picornavirus, canine picornavirus, discovered in dogs. J Virol 86:3402–3403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wu Z, Ren X, Yang L, Hu Y, Yang J, He G, Zhang J, Dong J, Sun L, Du J, Liu L, Xue Y, Wang J, Yang F, Zhang S, Jin Q (2012) Virome analysis for identification of novel mammalian viruses in bat species from Chinese provinces. J Virol 86:10999–11012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Wu Z, Yang L, Ren X, He G, Zhang J, Yang J, Qian Z, Dong J, Sun L, Zhu Y, Du J, Yang F, Zhang S, Jin Q (2016) Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J 10:609–620

    Article  PubMed  Google Scholar 

  106. Xiao Y, Rouzine IM, Bianco S, Acevedo A, Faul Goldstein E, Farkov M, Brodsky L, Andino R (2016) RNA recombination enhances adaptability and is required for virus spread and virulence. Cell Host Microbe 19:493–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Yinda CK, Zell R, Deboutte W, Zeller M, Conceicao-Neto N, Heylen E, Maes P, Knowles NJ, Ghogomu SM, Van Ranst M, Matthijnssens J (2017) Highly divers population of Picornaviridae and other members of the Picornavirales, in Cameroonian fruit bats. BMC Genomics 18:249

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yogo Y, Wimmer E (1972) Polyadenylic acid at the 3′-terminus of poliovirus RNA. Proc Natl Acad Sci USA 69:1877–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yozwiak NL, Skewes-Cox P, Gordon A, Saborio S, Kuan G, Malmaseda A, Ganem D, Harris E, DiRisi JL (2010) Human enterovirus 109: a novel interspecies recombinant enterovirus isolated from a case of acute pediatric respiratory illness in Nicaragua. J Virol 84:9047–9058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zell R, Delwart E, Gorbalenya AE, Hovi T, King AMQ, Knowles NJ, Lindberg AM, Pallansch MA, Palmenberg AC, Reuter G, Simmonds P, Skern T, Stanway G, Yamashita T, ICTV Report Consortium (2017) ICTV virus taxonomy profile: Picornaviridae. J Gen Virol 98:2421–2422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zell R, Krumbholz A, Dauber M, Hoey E, Wutzler P (2006) Molecular-based reclassification of the bovine enteroviruses. J Gen Virol 87:375–385

    Article  CAS  PubMed  Google Scholar 

  112. Zhang T, Breitbart M, Lee WH, Run JQ, Wei CL, Soh SW, Hibberd ML, Liu ET, Rohwer F, Ruan Y (2006) RNA viral community in human feces: prevalence of plant pathogenic viruses. PLoS Biol 4:e3

    Article  PubMed  CAS  Google Scholar 

  113. Zylberberg M, Van Hemert C, Dumbacher JP, Handel CM, Tihan T, DeRisi JL (2016) Novel picornavirus associated with avian keratin disorder in Alaskan birds. mBio 7:e00874-16

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Zell.

Ethics declarations

Conflict of interest

The author chairs the Picornaviridae Study Group of the International Committee on Taxonomy of Viruses (ICTV).

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by the author.

Informed consent

Not applicable.

Additional information

Handling Editior: Tim Skern.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2017_3614_MOESM1_ESM.pdf

Supplementary Figure 1 Phylogenetic analysis of the picornavirus P1 genome region. Two hundred one picornavirus P1 nucleotide sequences representing all approved and proposed picornavirus species plus unassigned picornaviruses were aligned with MEGA5 and adjusted manually. Bayesian MCMC tree inference was conducted with MrBayes3.2 using an optimal substitution method (GTR+G+I). Convergence was reached after 4,000,000 generations. Numbers at nodes indicate posterior probabilities. The scale bar represents the number of substitutions per site. Given are GenBank accession numbers, proposed or approved genus names (printed in bold and underlined), species names (printed in bold), and strain designations (in square brackets). The colours of the five supergroups correspond to those in Figure 2. (PDF 3293 kb)

705_2017_3614_MOESM2_ESM.pdf

Supplementary Figure 2 Phylogenetic analysis of the picornavirus 3CD genome region. Two hundred six picornavirus 3CD nucleotide sequences representing all approved and proposed picornavirus species plus unassigned picornaviruses were aligned with MEGA5 and adjusted manually. Bayesian MCMC tree inference was conducted with MrBayes3.2 using an optimal substitution method (GTR+G+I). Convergence was reached after 6,500,000 generations. Numbers at nodes indicate posterior probabilities. The scale bar represents the number of substitutions per site. Given are GenBank accession numbers, proposed or approved genus names (printed in bold and underlined), species names (printed in bold), and strain designations (in square brackets). The colours of the five supergroups correspond to those in Figure 3. (PDF 2336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zell, R. Picornaviridae—the ever-growing virus family. Arch Virol 163, 299–317 (2018). https://doi.org/10.1007/s00705-017-3614-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3614-8

Navigation