Skip to main content
Log in

Effect of porcine circovirus type 2 (PCV2) on the function of splenic CD11c+ dendritic cells in mice

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Porcine circovirus-associated disease (PCVAD) caused by porcine circovirus type 2 (PCV2) is an important disease in the global pig industry. Dendritic cells (DCs) are the primary immune cells capable of initiating adaptive immune responses as well as major target cells of PCV2. To determine whether PCV2 affects the immune functions of DCs, we evaluated the expression of endocytosis and co-stimulatory molecules on DCs (CD11c+) from PCV2-infected mouse spleen by flow cytometry (FCM). We also analyzed the main cytokines secreted by DCs (CD11c+) and activation of CD4+ and CD8+ T cells by DCs (CD11c+) through measurement of cytokine secretion, using ELISA. Compared with control mice, PCV2 did not affect the endocytic activity of DCs but it significantly enhanced TNF-α secretion and markedly decreased IFN-α secretion. Subsets of CD40+, MHCII+ CD40+ and CD137L+ CD86+ DCs did not increase obviously, but MHCII+ CD40- and CD137L- CD80+/CD86+ DCs increased significantly in PCV2-infected mouse spleen. Under the stimulation of DCs from PCV2-infected mouse, secretion of IFN-γ by CD4+ and CD8+ T cells and of IL-12 by CD8+ T cells was significantly lower than in control mice, while secretion of IL-4 by CD4+ T cells was remarkably higher. These results indicate that PCV2 modulates cytokine secretion and co-stimulatory molecule expression of DCs, and alters activation of CD4+ and CD8+ T cells by DCs. The immunomodulatory effects of PCV2 on DCs might be related to the host’s immune dysfunction and persistent infection with this virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Allan GM, Ellis JA (2000) Porcine circoviruses: a review. J Vet Diagn Invest 12:3–14

    Article  CAS  PubMed  Google Scholar 

  2. Allan G, Krakowka S, Ellis J, Charreyre C (2012) Discovery and evolving history of two genetically related but phenotypically different viruses, porcine circoviruses 1 and 2. Virus Res 164:4–9

    Article  CAS  PubMed  Google Scholar 

  3. Meng XJ (2012) Spread like a wildfire—the omnipresence of porcine circovirus type 2 (PCV2) and its ever-expanding association with diseases in pigs. Virus Res 164:1–3

    Article  CAS  PubMed  Google Scholar 

  4. Meng XJ (2013) Porcine circovirus type 2 (PCV2): pathogenesis and interaction with the immune system. Annu Rev Anim Biosci 1:43–64

    Article  PubMed  Google Scholar 

  5. Dorr PM, Baker RB, Almond GW, Wayne SR, Gebreyes WA (2007) Epidemiologic assessment of porcine circovirus type 2 coinfection with other pathogens in swine. J Am Vet Med Assoc 230:244–250

    Article  PubMed  Google Scholar 

  6. Opriessnig T, Halbur PG (2012) Concurrent infections are important for expression of porcine circovirus associated disease. Virus Res 164:20–32

    Article  CAS  PubMed  Google Scholar 

  7. Segalés J (2012) Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. Virus Res 164:10–19

    Article  PubMed  Google Scholar 

  8. Nielsen J, Vincent IE, Bøtner A, Ladekaer-Mikkelsen AS, Allan G, Summerfield A, McCullough KC (2003) Association of lymphopenia with porcine circovirus type 2 induced post weaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol 92:97–111

    Article  CAS  PubMed  Google Scholar 

  9. Darwich L, Balasch M, Plana-Durán J, Segalés J, Domingo M, Mateu E (2003) Cytokine profiles of peripheral blood mononuclear cells from pigs with post weaning multisystemic wasting syndrome in response to mitogen, superantigen or recall viral antigens. J Gen Virol 84:3453–3457

    Article  CAS  PubMed  Google Scholar 

  10. Sipos W, Duvigneau JC, Willheim M, Schilcher F, Hartl RT, Hofbauer G, Exel B, Pietschmann P, Schmoll F (2004) Systemic cytokine profile in feeder pigs suffering from natural post weaning multisystemic wasting syndrome (PMWS) as determined by semiquantitative RT-PCR and flow cytometric intracellular cytokine detection. Vet Immunol Immunopathol 99:63–71

    Article  CAS  PubMed  Google Scholar 

  11. Stevenson LS, McCullough K, Vincent I, Gilpin DF, Summerfield A, Nielsen J, McNeilly F, Adair BM, Allan GM (2006) Cytokine and C-reactive protein profiles induced by porcine circovirus type 2 experimental infection in 3-week-old piglets. Viral Immunol 19:189–195

    Article  CAS  PubMed  Google Scholar 

  12. Gilpin DF, McCullough K, Meehan BM, McNeilly F, McNair I, Stevenson LS, Foster JC, Ellis JA, Krakowka S, Adair BM, Allan GM (2003) In vitro studies on the infection and replication of porcine circovirus type 2 in cells of the porcine immune system. Vet Immunol Immunopathol 94:149–161

    Article  CAS  PubMed  Google Scholar 

  13. Vincent IE, Carrasco CP, Herrmann B, Meehan BM, Allan GM, Summerfield A, McCullough KC (2003) Dendritic cells harbor infectious porcine circovirus type 2 in the absence of apparent cell modulation or replication of the virus. J Virol 77:13288–13300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chang HW, Jeng CR, Lin TL, Liu JJ, Chiou MT, Tsai YC, Chia MY, Jan TR, Pang VF (2006) Immunopathological effects of porcine circovirus type 2 (PCV2) on swine alveolar macrophages by in vitro inoculation. Vet Immunol Immunopathol 110:207–219

    Article  CAS  PubMed  Google Scholar 

  15. Li J, Yu Q, Nie X, Guo X, Song Q, Li H (2012) Effects of porcine circovirus type 2 on expression of mRNA associated with endogenous antigen processing and presentation in pulmonary alveolar macrophages and circulating T lymphocytes in piglets. Vet J 193:199–205

    Article  CAS  PubMed  Google Scholar 

  16. Vincent IE, Carrasco CP, Guzylack-Piriou L, Herrmann B, McNeilly F, Allan GM, Summerfield A, McCullough KC (2005) Subset-dependent modulation of dendritic cell activity by circovirus type 2. Immunology 115:388–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cecere TE, Meng XJ, Pelzer K, Todd SM, Beach NM, Ni YY, Leroith T (2012) Co-infection of porcine dendritic cells with porcine circovirus type 2a (PCV2a)and genotype II porcine reproductive and respiratory syndrome virus (PRRSV)induces CD4+CD25+FoxP3+ T cells in vitro. Vet Microbiol 160:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667

    Article  CAS  PubMed  Google Scholar 

  19. Kow NY, Mak A (2013) Costimulatory pathways: physiology and potential therapeutic manipulation in systemic lupus erythematosus. Clin Dev Immunol 2013:245928

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hernandez MG, Shen L, Rock KL (2007) CD40-CD40 ligand interaction between dendritic cells and CD8+ T cells is needed to stimulate maximal T cell responses in the absence of CD4+ T cell help. J Immunol 178:2844–2852

    Article  CAS  PubMed  Google Scholar 

  21. Bertram EM, Dawicki W, Sedgmen B, Bramson JL, Lynch DH, Watts TH (2004) A switch in costimulation from CD28 to 4-1BB during primary versus secondary CD8 T cell response to influenza in vivo. J Immunol 172:981–988

    Article  CAS  PubMed  Google Scholar 

  22. Harfuddin Z, Kwajah S, Chong Nyi Sim A, Macary PA, Schwarz H (2013) CD137L-stimulated dendritic cells are more potent than conventional dendritic cells at eliciting cytotoxic T-cell responses. Oncoimmunology 2:e26859

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lorincz M, Cságola A, Biksi I, Szeredi L, Dán A, Tuboly T (2010) Detection of porcine circovirus in rodents4—short communication. Acta Vet Hung 58:265–268

    Article  PubMed  Google Scholar 

  24. Pinheiro AL, Bulos LH, Onofre TS, de Paula Gabardo M, de Carvalho OV, Fausto MC, Guedes RM, de Almeida MR, Silva Júnior A (2013) Verification of natural infection of peridomestic rodents by PCV2 on commercial swine farms. Res Vet Sci 94:764–768

    Article  PubMed  Google Scholar 

  25. Kiupel M, Stevenson GW, Galbreath EJ, North A, HogenEsch H, Mittal SK (2005) Porcine circovirus type 2 (PCV2) causes apoptosis in experimentally inoculated BALB/c mice. BMC Vet Res 1:7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu J, Chen I, Chua H, Du Q, Kwang J (2006) Inhibition of porcine circovirus type 2 replication in mice by RNA interference. Virology 347:422–433

    Article  CAS  PubMed  Google Scholar 

  27. Li J, Yuan X, Zhang C, Miao L, Wu J, Shi J, Xu S, Cui S, Wang J, Ai H (2010) A mouse model to study infection against porcine circovirus type 2: viral distribution and lesions in mouse. Virol J 7:158

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sylla S, Cong YL, Sun YX, Yang GL, Ding XM, Yang ZQ, Zhou YL, Yang M, Wang CF, Ding Z (2014) Protective immunity conferred by porcine circovirus 2 ORF2-based DNA vaccine in mice. Microbiol Immunol 58:398–408

    Article  CAS  PubMed  Google Scholar 

  29. Ladekjær-Mikkelsen AS, Nielsen J, Stadejek T, Storgaard T, Krakowka S, Ellis J, McNeilly F, Allan G, Bøtner A (2002) Reproduction of post weaning multisystemic wasting syndrome (PMWS) in immunostimulated and non-immunostimulated 3-week-old piglets experimentally infected with porcine circovirus type 2 (PCV-2). Vet Microbio l89(2–3):97–114

    Article  Google Scholar 

  30. Reed LJ, Muench H (1938) A simple method of estimating fifty per cent endpoints. Am J Hygiene 27:493–497

    Google Scholar 

  31. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392:245–252

    Article  CAS  PubMed  Google Scholar 

  32. Kaiserlian D, Dubois B (2001) Dendritic cells and viral immunity: friends or foes? Semin Immunol 13:303–310

    Article  CAS  PubMed  Google Scholar 

  33. Trevejo JM, Marino MW, Philpott N, Josien R, Richards EC, Elkon KB, Falck-Pedersen E (2001) TNF-alpha -dependent maturation of local dendritic cells is critical for activating the adaptive immune response to virus infection. Proc Natl Acad Sci USA 98:12162–12167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu LL, Warren MK, Rose WL, Gong W, Wang JM (1996) Human recombinant monocyte chemotactic protein and other C-C chemokines bind and induce directional migration of dendritic cells in vitro. J Leukoc Biol 60:365–371

    CAS  PubMed  Google Scholar 

  35. Tanaka N, Sato M, Lamphier MS, Nozawa H, Oda E, Noguchi S, Schreiber RD, Tsujimoto Y, Taniguchi T (1998) Type I interferons are essential mediators of apoptotic death in virally infected cells. Genes Cells 3:29–37

    Article  CAS  PubMed  Google Scholar 

  36. Biron CA (2001) Interferons and as immune regulators—a new look. Immunity 14:661–664

    Article  CAS  PubMed  Google Scholar 

  37. Kekarainen T, Montoya M, Dominguez J, Mateu E, Segalés J (2008) Porcine circovirus type 2 (PCV2) viral components immunomodulate recall antigen responses. Vet Immunol Immunopathol 124:41–49

    Article  CAS  PubMed  Google Scholar 

  38. Carr MW, Roth SJ, Luther E, Rose SS, Springer TA (1994) Monocyte chemoattractant protein 1 acts as a T-lymphocyte chemoattractant. Proc Natl Acad Sci USA 91:3652–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsai YC, Jeng CR, Hsiao SH, Chang HW, Liu JJ, Chang CC, Lin CM, Chia MY, Pang VF (2010) Porcine circovirus type 2 (PCV2) induces cell proliferation, fusion, and chemokine expression in swine monocytic cells in vitro. Vet Res 41:60

    Article  PubMed  PubMed Central  Google Scholar 

  40. Darwich L, Segalés J, Domingo M, Mateu E (2002) Changes in CD4(+), CD8(+), CD4(+) CD8(+), and immunoglobulin M-positive peripheral blood mononuclear cells of postweaning multisystemic wasting syndrome-affected pigs and age-matched uninfected wasted and healthy pigs correlate with lesions and porcine circovirus type 2 load in lymphoid tissues. Clin Diagn Lab Immunol 9:236–242

    PubMed  PubMed Central  Google Scholar 

  41. Romagnani S (1991) Type 1 T helper and type 2 T helper cells: functions, regulation and role in protection and disease. Int J Clin Lab Res 21:152–158

    Article  CAS  PubMed  Google Scholar 

  42. Croft M, Carter L, Swain SL, Dutton RW (1994) Generation of polarized antigen-specific CD8 effector populations: reciprocal action of interleukin(IL)-4 and IL-12 in promoting type 2 versus type 1 cytokine profiles. J Exp Med 180:1715–1728

    Article  CAS  PubMed  Google Scholar 

  43. Chtanova T, Kemp RA, Sutherland AP, Ronchese F, Mackay CR (2001) Gene microarrays reveal extensive differential gene expression in both CD4(+) and CD8(+) type 1 and type 2 T cells. J Immunol 167:3057–3063

    Article  CAS  PubMed  Google Scholar 

  44. Gutcher I, Becher B (2007) APC-derived cytokines and T cell polarization in autoimmune inflammation. J Clin Invest 117:1119–1127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (30771600, 31172329). We thank Dr. Wang Jiaxin (College of Veterinary Medicine, Agricultural University of Hebei, Baoding, China) for providing the experimental animal house and Mr. XuYong Gang (Department of Haematology, Xiyuan Hospital of China Academy of Chinese Medical Sciences) for assistance with FCM.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huanrong Li or Qinye Song.

Ethics declarations

This work was funded by the National Natural Science Foundation of China (30771600, 31172329).

Competing interests

The authors declare that they have no competing interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, L., Yuan, W. et al. Effect of porcine circovirus type 2 (PCV2) on the function of splenic CD11c+ dendritic cells in mice. Arch Virol 162, 1289–1298 (2017). https://doi.org/10.1007/s00705-017-3221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-017-3221-8

Keywords

Navigation