Skip to main content
Log in

Expression of human endogenous retrovirus K and W in babies

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Here we determined the relative expression of HERV-K and W proviruses in HIV infected and non-infected mothers as well as their respective babies up to 1 year-old. HIV-infected mothers, their babies and uninfected control groups presented expression of both HERV-K and HERV-W with relatively high frequency. While the level of HERV-K expression was similar among groups, the level of HERV-W expression in HIV-infected mothers was four-fold higher than the uninfected mothers from the control group (p < 0.01). HERV-W was down regulated in HIV-exposed babies in comparison to non-exposed babies. To our knowledge, this is the first report of HERV transcriptional activity in babies from 0-1 year-old.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Griffiths DJ (2001) Endogenous retroviruses in the human genome sequence. Genome Biol 2, REVIEWS1017

  2. Medstrand P, Landry JR, Mager DL (2001) Long terminal repeats are used as alternative promoters for the endothelin B receptor and apolipoprotein C-I genes in humans. J Biol Chem 276:1896–1903

    Article  CAS  PubMed  Google Scholar 

  3. Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P et al (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–789

    Article  CAS  PubMed  Google Scholar 

  4. Ting CN, Rosenberg MP, Snow CM, Samuelson LC, Meisler MH (1992) Endogenous retroviral sequences are required for tissue-specific expression of a human salivary amylase gene. Genes Dev 6:1457–1465

    Article  CAS  PubMed  Google Scholar 

  5. Contreras-Galindo R, Kaplan MH, Markovitz DM, Lorenzo E, Yamamura Y (2006) Detection of HERV-K(HML-2) viral RNA in plasma of HIV type 1-infected individuals. AIDS Res Hum Retroviruses 22:979–984

    Article  CAS  PubMed  Google Scholar 

  6. Esqueda D, Xu F, Moore Y, Yang Z, Huang G, Lennon PA, Hu PC, Dong J (2013) Lack of correlation between HERV-K expression and HIV-1 viral load in plasma specimens. Ann Clin Lab Sci 43:122–125

    CAS  PubMed  Google Scholar 

  7. Laderoute MP, Giulivi A, Larocque L, Bellfoy D, Hou Y, Wu H-X, Fowke K, Wu J, Diaz-Mitoma F (2007) The replicative activity of human endogenous retrovirus K102 (HERV-K102) with HIV viremia. AIDS 21:2417–2424

    Article  PubMed  Google Scholar 

  8. WHO (2016) Mother-to-child transmission of HIV. World Health Organization. http://www.who.int/hiv/topics/mtct/about/en/. Accessed June 2016

  9. Garrison KE, Jones RB, Meiklejohn DA, Anwar N, Ndhlovu LC, Chapman JM, Erickson AL, Agrawal A, Spotts G et al (2007) T cell responses to human endogenous retroviruses in HIV-1 infection. PLoS Pathog 3:e165

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jones RB, Garrison KE, Mujib S, Mihajlovic V, Aidarus N, Hunter DV, Martin E, John VM, Zhan W et al (2012) HERV-K-specific T cells eliminate diverse HIV-1/2 and SIV primary isolates. J Clin Invest 122:4473–4489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. SenGupta D, Tandon R, Vieira RGS, Ndhlovu LC, Lown-Hecht R, Ormsby CE, Loh L, Jones RB, Garrison KE et al (2011) Strong human endogenous retrovirus-specific T cell responses are associated with control of HIV-1 in chronic infection. J Virol 85:6977–6985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kämmerer U, Germeyer A, Stengel S, Kapp M, Denner J (2011) Human endogenous retrovirus K (HERV-K) is expressed in villous and extravillous cytotrophoblast cells of the human placenta. J Reprod Immunol 91:1–8

    PubMed  Google Scholar 

  13. Brinzevich D, Young GR, Sebra R, Ayllon J, Maio SM, Deikus G, Chen BK, Fernandez-Sesma A, Simon V, Mulder LCF (2014) HIV-1 interacts with human endogenous retrovirus K (HML-2) envelopes derived from human primary lymphocytes. J Virol 88:6213–6223

    Article  PubMed  PubMed Central  Google Scholar 

  14. Uleri E, Mei A, Mameli G, Poddighe L, Serra C, Dolei A (2014) HIV Tat acts on endogenous retroviruses of the W family and this occurs via Toll-like receptor 4: inference for neuroAIDS. AIDS 28:2659–2670

    Article  CAS  PubMed  Google Scholar 

  15. Gonzalez-Hernandez MJ, Cavalcoli JD, Sartor MA, Contreras-Galindo R, Meng F, Dai M, Dube D, Saha AK, Gitlin SD et al (2014) Regulation of the human endogenous retrovirus K (HML-2) transcriptome by the HIV-1 Tat protein. J Virol 88:8924–8935

    Article  PubMed  PubMed Central  Google Scholar 

  16. do Olival GS, Faria TS, Nali LHS, de Oliveira ACP, Casseb J, Vidal JE, Cavenaghi VB, Tilbery CP, Moraes L et al (2013) Genomic analysis of ERVWE2 locus in patients with multiple sclerosis: absence of genetic association but potential role of human endogenous retrovirus type W elements in molecular mimicry with myelin antigen. Front Microbiol 4:172

    Article  PubMed  PubMed Central  Google Scholar 

  17. Perron H, Jouvin-Marche E, Michel M, Ounanian-Paraz A, Camelo S, Dumon A, Jolivet-Reynaud C, Marcel F, Souillet Y et al (2001) Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology 287:321–332

    Article  CAS  PubMed  Google Scholar 

  18. Perron H, Germi R, Bernard C, Garcia-Montojo M, Deluen C, Farinelli L, Faucard R, Veas F, Stefas I et al (2012) Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Mult Scler 18:1721–1736

    Article  PubMed  PubMed Central  Google Scholar 

  19. Balestrieri E, Pica F, Matteucci C, Zenobi R, Sorrentino R, Argaw-Denboba A, Cipriani C, Bucci I, Sinibaldi-Vallebona P (2015) Transcriptional activity of human endogenous retroviruses in human peripheral blood mononuclear cells. Biomed Res Int 2015:164529

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nellåker C, Yao Y, Jones-Brando L, Mallet F, Yolken RH, Karlsson H (2006) Transactivation of elements in the human endogenous retrovirus W family by viral infection. Retrovirology 3:44

    Article  PubMed  PubMed Central  Google Scholar 

  21. Medstrand P, Lindeskog M, Blomberg J (1992) Expression of human endogenous retroviral sequences in peripheral blood mononuclear cells of healthy individuals. J Gen Virol 73(Pt 9):2463–2466

    Article  CAS  PubMed  Google Scholar 

  22. de Jonge HJM, Fehrmann RSN, de Bont ESJM, Hofstra RMW, Gerbens F, Kamps WA, de Vries EGE, van der Zee AGJ, te Meerman GJ, ter Elst A (2007) Evidence based selection of housekeeping genes. PLoS One 2:e898

    Article  PubMed  PubMed Central  Google Scholar 

  23. Medstrand P, Blomberg J (1993) Characterization of novel reverse transcriptase encoding human endogenous retroviral sequences similar to type A and type B retroviruses: differential transcription in normal human tissues. J Virol 67:6778–6787

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Contreras-Galindo R, González M, Almodovar-Camacho S, González-Ramírez S, Lorenzo E, Yamamura Y (2006) A new real-time-RT-PCR for quantitation of human endogenous retroviruses type K (HERV-K) RNA load in plasma samples: increased HERV-K RNA titers in HIV-1 patients with HAART non-suppressive regimens. J Virol Methods 136:51–57

    Article  CAS  PubMed  Google Scholar 

  25. Contreras-Galindo R, Almodóvar-Camacho S, González-Ramírez S, Lorenzo E, Yamamura Y (2007) Comparative longitudinal studies of HERV-K and HIV-1 RNA titers in HIV-1-infected patients receiving successful versus unsuccessful highly active antiretroviral therapy. AIDS Res Hum Retroviruses 23:1083–1086

    Article  CAS  PubMed  Google Scholar 

  26. Bhardwaj N, Maldarelli F, Mellors J, Coffin JM (2014) HIV-1 infection leads to increased transcription of human endogenous retrovirus HERV-K (HML-2) proviruses in vivo but not to increased virion production. J Virol 88:11108–11120

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ormsby CE, Sengupta D, Tandon R, Deeks SG, Martin JN, Jones RB, Ostrowski MA, Garrison KE, Vázquez-Pérez JA et al (2012) Human endogenous retrovirus expression is inversely associated with chronic immune activation in HIV-1 infection. PLoS One 7:e41021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mameli G, Astone V, Arru G, Marconi S, Lovato L, Serra C, Sotgiu S, Bonetti B, Dolei A (2007) Brains and peripheral blood mononuclear cells of multiple sclerosis (MS) patients hyperexpress MS-associated retrovirus/HERV-W endogenous retrovirus, but not human herpesvirus 6. J Gen Virol 88:264–274

    Article  CAS  PubMed  Google Scholar 

  29. Borjabad A, Morgello S, Chao W, Kim S-Y, Brooks AI, Murray J, Potash MJ, Volsky DJ (2011) Significant effects of antiretroviral therapy on global gene expression in brain tissues of patients with HIV-1-associated neurocognitive disorders. PLoS Pathog 7:e1002213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chaparro J, Reeds DN, Wen W, Xueping E, Klein S, Semenkovich CF, Bae KT, Quirk EK, Powderly WG et al (2005) Alterations in thigh subcutaneous adipose tissue gene expression in protease inhibitor-based highly active antiretroviral therapy. Metabolism 54:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Serrao E, Wang C-H, Frederick T, Lee C-L, Anthony P, Arribas-Layton D, Baker K, Millstein J, Kovacs A, Neamati N (2014) Alteration of select gene expression patterns in individuals infected with HIV-1. J Med Virol 86:678–686

    Article  CAS  PubMed  Google Scholar 

  32. Rohwedel J, Guan K, Wobus AM (1999) Induction of cellular differentiation by retinoic acid in vitro. Cells Tissues Organs 165:190–202

    Article  CAS  PubMed  Google Scholar 

  33. Ballow M, Wang W, Xiang S (1996) Modulation of B-cell immunoglobulin synthesis by retinoic acid. Clin Immunol Immunopathol 80:S73–S81

    Article  CAS  PubMed  Google Scholar 

  34. Taruscio D, Mantovani A (1998) Human endogenous retroviral sequences: possible roles in reproductive physiopathology. Biol Reprod 59:713–724

    Article  CAS  PubMed  Google Scholar 

  35. Zhou X, Wang W, Yang Y (2008) The expression of retinoic acid receptors in thymus of young children and the effect of all-transretinoic acid on the development of T cells in thymus. J Clin Immunol 28:85–91

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank FAPESP projects #2011/13612 and #2012/15381-7 for funding. Caleiro GS holds CAPES scholarship. Nali LHS, Oliveira ACS, Nunes CF hold FAPESP scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camila M. Romano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nali, L.H.S., Oliveira, A.C.S., Alves, D.O. et al. Expression of human endogenous retrovirus K and W in babies. Arch Virol 162, 857–861 (2017). https://doi.org/10.1007/s00705-016-3167-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3167-2

Keywords

Navigation