Skip to main content

Advertisement

Log in

Identification and characterization of an isolate of apple green crinkle associated virus involved in a severe disease of quince (Cydonia oblonga, Mill.)

  • Annotated Sequence Record
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

A quince tree showing severe symptoms of a previously undescribed viral disease occurring in northern Apulia (Italy) was analysed using high-throughput sequencing of small RNA libraries, leading to the identification of a new strain of apple green crinkle associated virus (isolate AGCaV-CYD) showing peculiar traits. RT-PCR with specific primers detected AGCaV-CYD in consistent association with symptoms in the surveyed orchards. Molecular characterization of the reconstructed genome, together with phylogenetic analysis, showed it to be closely related to an AGCaV strain causing green crinkle disease in apple (AGCaV-AUR) and divergent from the type strain of apple stem pitting virus (ASPV-PA66).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Birişik N, Baloğlu S (2010) Evaluation of the presence and symptomology of viruses in commercial quince orchards in Turkey. Julius Kühn Archiv 427:257

    Google Scholar 

  2. Mathioudakis MM, Maliogka VI, Dovas CI, Paunović S, Katis NI (2009) Reliable RT-PCR detection of Apple stem pitting virus in pome fruits and its association with quince fruit deformation disease. Plant Pathol 58:228–236

    Article  CAS  Google Scholar 

  3. Paunovic S, Maksimovic V, Rankovic M, Radovic S (1999) Characterization of a virus associated with pear stony pit in cv. Wurttemberg. J Phytopathol 147:695–700

    Article  CAS  Google Scholar 

  4. Schwarz K, Jelkmann W (1997) Detection and characterization of European Apple stem pitting virus sources from apple and pear by PCR and partial sequence analysis. Acta Hortic 472:75–86

    Google Scholar 

  5. Rana T, Chandel V, Hallan V, Zaidi AA (2008) Cydonia oblonga as reservoir of Apple chlorotic leaf spot virus in India. Plant Pathol 57:393

    Article  Google Scholar 

  6. Németh MV (1984) Virus, mycoplasma, and rickettsia diseases of fruit trees. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  7. Paunovic S (1995) Double-stranded RNA associated with fruit deformation of quince. Acta Hortic 386:45–50

    Article  CAS  Google Scholar 

  8. Paunovic S, Rankovic S (1998) Relationship between quince fruit deformation virus and some pome fruit viruses. Acta Hortic 472:125–133

    Article  CAS  Google Scholar 

  9. Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010) Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J 62:960–976

    CAS  PubMed  Google Scholar 

  10. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  11. Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moxon S, Jing R, Szittya G, Schwach F, Pilcher RLR, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pirovano W, Miozzi L, Boetzer M, Pantaleo V (2015) Bioinformatics approaches for viral metagenomics in plants using short RNAs: model case of study and application to a Cicer arietinum population. Front Microbiol 5:790. doi:10.3389/fmicb.2014.00790

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 185:821–829

    Article  Google Scholar 

  15. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Faggioli F, Anaclerio F, Angelini E, Antonelli MG, Bertazzon N, Bianchi G, Bianchedi P, Bianco PA (2012) Validation of diagnostic protocols for the detection of grapevine viruses covered by phytosanitary rules In: Proceedings of the 17th Congress of the International Council for the Study of Virus and Virus-like Diseases of the Grapevine (ICVG), Davis, California, USA, pp 260–261

  17. Minafra A, Hadidi A (1994) Sensitive detection of grapevine virus A, B, or leafroll-associated III from viruliferous mealybugs and infected tissue by cDNA amplification. J Virol Methods 47:175–187

    Article  CAS  PubMed  Google Scholar 

  18. Dovas CI, Katis NI (2003) A spot nested RT-PCR method for the simultaneous detection of members of the Vitivirus and Foveavirus genera in grapevine. J Virol Methods 107:99–106

    Article  CAS  PubMed  Google Scholar 

  19. James D, Varga A, Jesperson GD, Navratil M, Safarova D, Constable F, Horner M, Eastwell K, Jelkmann W (2013) Identification and complete genome analysis of a virus variant or putative new foveavirus associated with apple green crinkle disease. Arch Virol 158:1877–1887

    Article  CAS  PubMed  Google Scholar 

  20. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  21. Seguin J, Rajeswaran R, Malpica-López N, Martin RR, Kasschau K, Dolja VV, Otten P, Farinelli L, Pooggin MM (2014) De novo reconstruction of consensus master genomes of plant RNA and DNA viruses from siRNAs. PLoS One 9:e88513

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dunoyer P, Himber C, Voinnet O (2005) DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal. Nat Genet 37:1356–1360

    Article  CAS  PubMed  Google Scholar 

  23. Martelli GP, Jelkmann W (1998) Foveavirus, a new plant virus genus. Arch Virol 1436:1245–1249

    Article  Google Scholar 

  24. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F (2007) Clustal W and Clustal X version 20. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  25. Araujo PR, Yoon K, Daijin K, Smith AD, Qiao M, Suresh U, Burns SC, Penalva LOF (2012) Before it gets started: regulating translation at the 5′ UTR. Compar Funct Genom 2012:475731

    Article  Google Scholar 

  26. Dreher TW (2009) Role of tRNA-like structures in controlling plant virus replication. Virus Res 139:217–229

    Article  CAS  PubMed  Google Scholar 

  27. Morelli M, Minafra A, Boscia D, Martelli GP (2011) Complete nucleotide sequence of a new variant of Grapevine rupestris stem pitting-associated virus from southern Italy. Arch Virol 156:543–546

    Article  CAS  PubMed  Google Scholar 

  28. Pagni M, Vassilios I, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, Martin O, Kuznetsov D, Falquet L (2007) MyHits: improvements to an interactive resource for analyzing protein sequences. Nucleic Acids Res 35:433–437

    Article  Google Scholar 

  29. Martelli GP, Adams MJ, Kreuze JF, Dolja VV (2007) Family Flexiviridae: a case study in virion and genome plasticity. Ann Rev Phytopathol 45:73–100

    Article  CAS  Google Scholar 

  30. Caruthers JM, McKay DB (2002) Helicase structure and mechanism. Curr Opin Struct Biol 12:123–133

    Article  CAS  PubMed  Google Scholar 

  31. Dolja VV, Boyko VP, Agranovsky AA, Koonin EV (1991) Phylogeny of capsid proteins of rod-shaped and filamentous RNA plant virus: two families with distinct patterns of sequence and probably structure conservation. Virology 184:79–86

    Article  CAS  PubMed  Google Scholar 

  32. Howitt RL, Beever RE, Pearson MN, Forster RL (2001) Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant ‘potex-like’viruses. J Gen Virol 82:67–78

    Article  CAS  PubMed  Google Scholar 

  33. Adams MJ, Candresse T, Hammond J, Kreuze JF, Martelli GP, Namba S, Pearson MN, Ryu KH, Saldarelli P, Yoshikawa N (2012) Betaflexiviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: classification and nomenclature of viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego, pp 920–941

    Google Scholar 

  34. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  35. Liu N, Niu J, Zhao Y (2012) Complete genomic sequence analyses of Apple stem pitting virus isolates from China. Virus Genes 44:124–130

    Article  CAS  PubMed  Google Scholar 

  36. Alabi OJ, Martin RR, Naidu RA (2010) Sequence diversity, population genetics and potential recombination events in Grapevine rupestris stem pitting-associated virus in Pacific North-West vineyards. J Gen Virol 91:265–276

    Article  CAS  PubMed  Google Scholar 

  37. Komorowska B, Siedlecki P, Kaczanowski S, Hasiów-Jaroszewska B, Malinowski T (2011) Sequence diversity and potential recombination events in the coat protein gene of Apple stem pitting virus. Virus Res 158:263–267

    Article  CAS  PubMed  Google Scholar 

  38. Marais A, Faure C, Mustafayev E, Candresse T (2015) Characterization of new Isolates of Apricot vein clearing-associated virus and of a new Prunus-infecting virus: evidence for recombination as a driving force in Betaflexiviridae evolution. PLoS One 10:e0129469

    Article  PubMed  PubMed Central  Google Scholar 

  39. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003

    Article  PubMed  PubMed Central  Google Scholar 

  40. Menzel W, Jelkmann W, Maiss E (2002) Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J Virol Methods 99:81–92

    Article  CAS  PubMed  Google Scholar 

  41. Howell WE, Thompson D, Scott S (2011) Virus-like disorders of fruit trees with undetermined etiology. In: Hadidi A, Barba M, Candresse T, Jelkmann W (eds) Virus and virus-like diseases of pome and stone fruits. APS Press, St. Paula, pp 259–265

    Google Scholar 

  42. Marais A, Faure C, Candresse T (2016) New insights into Asian prunus viruses in the light of NGS-based full genome sequencing. PLoS One 11:e0146420

    Article  PubMed  PubMed Central  Google Scholar 

  43. Youssef F, Marais A, Faure C, Barone M, Gentit P, Candresse T (2011) Characterization of Prunus-infecting Apricot latent virus-like foveaviruses: evolutionary and taxonomic implications. Virus Res 155:440–445

    Article  CAS  PubMed  Google Scholar 

  44. Ghanem-Sabanadzovic NA, Tzanetakis IE, Sabanadzovic S (2013) Rubus canadensis virus 1, a novel betaflexivirus identified in blackberry. Arch Virol 158:445–449

    Article  PubMed  Google Scholar 

Download references

Author contribution statement

LL and LC detected the disease, carried out field monitoring, symptoms observation and samples collection. PS, MM and AG conceived and designed the lab experiments. AG performed RNA extraction, library preparation and NGS sequencing. AG and MM performed NGS data analysis. MM performed NGS experimental validation and conventional sequencing. MM performed genomic characterization and phylogenetic analysis. MM designed and performed the RT-PCR assay. PS and VNS contributed to data interpretation. MM and PS draft the paper. VNS critically reviewed the manuscript. All authors read and approved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Morelli.

Ethics declarations

Conflict of interest

MM declares that he has no conflict of interest. AG declares that she has no conflict of interest. LL declares that he has no conflict of interest. LC declares that he has no conflict of interest. VNS declares that he has no conflict of interest. PS declares that he has no conflict of interest.

Ethical approval

This article does not contain any study with human participants or animals performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morelli, M., Giampetruzzi, A., Laghezza, L. et al. Identification and characterization of an isolate of apple green crinkle associated virus involved in a severe disease of quince (Cydonia oblonga, Mill.). Arch Virol 162, 299–306 (2017). https://doi.org/10.1007/s00705-016-3074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3074-6

Keywords

Navigation