Skip to main content

Advertisement

Log in

Rabies vaccination at a virus-inoculated site as an alternative option to rabies immunoglobulin

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Combined active and passive immunization has been established to be an optimal strategy for rabies post-exposure prophylaxis (PEP). Prompt administration of vaccine and rabies immunoglobulin (RIG) can reliably prevent the disease. However, RIG is unavailable and unaffordable in the majority of cases. On the basis of a model experiment using hamsters, we demonstrated that vaccine injection at the wound site in the same manner as administration of RIG provided protective efficacy that was not inferior to the current optimal PEP, a combination of vaccination and RIG. Further study is needed to determine whether it can replace the use of RIG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. World Health Organization (Geneva) (2013) WHO expert consultation on rabies. WHO Technical Report Series 982

  2. Müller T, Dietzschold B, Ertl H, Fooks AR, Freuling C, Fehlner-Gardiner C, Kliemt J, Meslin FX, Franka R, Rupprecht CE, Tordo N, Wanderler AI, Kieny MP (2009) Development of a mouse monoclonal antibody cocktail for post-exposure rabies prophylaxis in humans. PLoS Negl Trop Dis 3(11):e542. doi:10.1371/journal.pntd.0000542

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wilde H, Tipkong P, Khawplod P (1999) Economic issue in post-exposure rabies treatment. J Travel Med 6(4):238–242

    Article  CAS  PubMed  Google Scholar 

  4. Wilde H, Lumlertdacha B, Meslin FX, Ghai S, Hemachudha T (2015) Worldwide rabies deaths prevention-A focus on the current inadequacies in postexposure prophylaxis of animal bite victims. Vaccine 34(2):187–189. doi:10.1016/j.vaccine.2015.11.036

    Article  PubMed  Google Scholar 

  5. Chutivongse S, Wilde H, Supich C, Baer GM, Fishbein DB (1990) Postexposure prophylaxis for rabies with antiserum and intradermal vaccination. Lancet 335(8694):896–898

    Article  CAS  PubMed  Google Scholar 

  6. Saraya A, Wacharapluesadee S, Khawplod P, Tepsumethanon S, Briggs D, Asawavichienjinda T, Hemachudha T (2010) A preliminary study of chemo- and cytokine responses in rabies vaccine recipients of intradermal and intramuscular regimens. Vaccine 28(29):4553–4557

    Article  CAS  PubMed  Google Scholar 

  7. Virojanapirom P, Khawplod P, Sawangvaree A, Wacharapluesadee S, Hemachudha T, Yamada K, Morimoto K, Nishizono A (2012) Molecular analysis of the mutational effects of Thai street rabies virus with increased virulence in mice after passages in the BHK cell line. Arch Virol 157(11):2201–2205. doi:10.1007/s00705-012-1402-z

    Article  CAS  PubMed  Google Scholar 

  8. Smith JS, Yager PA, Baer GM (1996) A rapid fluorescent focus inhibition test (RFFIT) for determining rabies virus-neutralising antibody. In: Meslin FX, Kaplan MM, Koprowski H (eds) Laboratory techniques in rabies, 4th edn. World Health Organization, Geneva, pp 181–192

    Google Scholar 

  9. Tantawichien T, Benjavongkulchai M, Limsuwan K, Khawplod P, Kaewchompoo W, Chomchey P, Sitprija V (1999) Antibody response after a four-site intradermal booster vaccination with cell-culture rabies vaccine. Clin Infect Dis 28(5):1100–1103

    Article  CAS  PubMed  Google Scholar 

  10. World Health Organization (Geneva) Rabies vaccines WHO position paper (2007) Weekly Epidemiological Record No. 49/50, pp 425–436

  11. Sarmento L, Li XQ, Howerth E, Jackson AC, Fu ZF (2005) Glycoprotein-mediated induction of apoptosis limits the spread of attenuated rabies viruses in the central nervous system of mice. J Neurovirol 11(6):571–581

    Article  CAS  PubMed  Google Scholar 

  12. Li J, McGettigan JP, Faber M, Schnell MJ, Dietzschold B (2008) Infection of monocytes or immature dendritic cells (DCs) with an attenuated rabies virus results in DC maturation and a strong activation of the NFκB signaling pathway. Vaccine 26(3):419–426

    Article  CAS  PubMed  Google Scholar 

  13. Kuang Y, Lackay SN, Zhao L, Fu ZF (2009) Role of chemokines in the enhancement of BBB permeability and inflammatory infiltration after rabies virus infection. Virus Res 144(1–2):18–26. doi:10.1016/j.virusres.2009.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lafon M (2011) Evasive strategies in rabies virus infection. Adv Virus Res 79:33–53. doi:10.1016/B978-0-12-387040-7.00003-2

    Article  CAS  PubMed  Google Scholar 

  15. Menager P, Roux P, Megret F, Bourgeois JP, Le Sourd AM, Danckaert A, Lafage M, Prehaud C, Lafon M (2009) Toll-like receptor 3 (TLR3) plays a major role in the formation of rabies virus Negri Bodies. PLoS Pathog 5(2):e1000315. doi:10.1371/journal.ppat.1000315

    Article  PubMed  PubMed Central  Google Scholar 

  16. Brzozka K, Finke S, Conzelmann KK (2005) Identification of the rabies virus alpha/beta interferon antagonist: phosphoprotein P interferes with phosphorylation of interferon regulatory factor 3. J Virol 79(12):7673–7681. doi:10.1128/JVI.79.12.7673-7681.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Brzozka K, Finke S, Conzelmann KK (2006) Inhibition of interferon signaling by rabies virus phosphoprotein P: activation-dependent binding of STAT1 and STAT2. J Virol 80(6):2675–2683. doi:10.1128/JVI.80.6.2675-2683.2006

    Article  CAS  PubMed  Google Scholar 

  18. Rieder M, Conzelmann KK (2011) Interferon in rabies virus infection. Adv Virus Res 79:91–114. doi:10.1016/B978-0-12-387040-7.00006-8

    Article  CAS  PubMed  Google Scholar 

  19. Vidy A, Chelbi-Alix M, Blondel D (2005) Rabies virus P protein interacts with STAT1 and inhibits interferon signal transduction pathways. J Virol 79(22):14411–14420. doi:10.1128/JVI.79.22.14411-14420.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vidy A, El Bougrini J, Chelbi-Alix MK, Blondel D (2007) The nucleocytoplasmic rabies virus P protein counteracts interferon signaling by inhibiting both nuclear accumulation and DNA binding of STAT1. J Virol 81(8):4255–4263. doi:10.1128/JVI.01930-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Moseley GW, Lahaye X, Roth DM, Oksayan S, Filmer RP, Rowe CL, Blondel D, Jans DA (2009) Dual modes of rabies P-protein association with microtubules: a novel strategy to suppress the antiviral response. J Cell Sci 122:3652–3662. doi:10.1242/jcs.045542

    Article  CAS  PubMed  Google Scholar 

  22. Chopy D, Pothlichet J, Lafage M, Megret F, Fiette L, Si-Tahar M, Lafon M (2011) Ambivalent role of the innate immune response in rabies virus pathogenesis. J Virol 85(13):6657–6668. doi:10.1128/JVI.00302-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miller A, Morse HC 3rd, Winkelstein J, Nathanson N (1978) The role of antibody in recovery from experimental rabies. I. Effect of depletion of B and T cells. J Immunol 121(1):321–326

    CAS  PubMed  Google Scholar 

  24. Templeton JW, Holmberg C, Garber T, Sharp RM (1986) Genetic control of serum neutralizing-antibody response to rabies vaccination and survival after a rabies challenge infection in mice. J Virol 59(1):98–102

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Xiang ZQ, Knowles BB, McCarrick JW, Ertl HC (1995) Immune effector mechanisms required for protection to rabies virus. Virology 214(2):398–404

    Article  CAS  PubMed  Google Scholar 

  26. Servat A, Lutsch C, Delore V, Lang J, Veitch K, Cliquet F (2003) Efficacy of rabies immunoglobulins in an experimental post-exposure prophylaxis rodent model. Vaccine 22(2):244–249

    Article  CAS  PubMed  Google Scholar 

  27. Dorfmeier CL, Tzvetkov EP, Gatt A, McGettigan JP (2013) Investigating the role for IL-21 in rabies virus vaccine-induced immunity. PLoS Negl Trop Dis 7(3):e2129. doi:10.1371/journal.pntd.0002129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou M, Zhang G, Ren G, Gnanadurai CW, Li Z, Chai Q, Yang Y, Leyson CM, Wu W, Cui M, Fu ZF (2013) Recombinant rabies viruses expressing GM-CSF or flagellin are effective vaccines for both intramuscular and oral immunizations. PLoS One 8(5):e63384. doi:10.1371/journal.pone.0063384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Thai Red Cross Society, the Research Chairman Grant and the Cluster and Program Management Office (CPMO), from the National Science and Technology Development Agency of Thailand. We thank Ms. Siriporn Ghai for the extensive editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinjiro Morimoto.

Ethics declarations

Conflict of interest

No conflicts of interest are declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morimoto, K., Khawplod, P., Sato, Y. et al. Rabies vaccination at a virus-inoculated site as an alternative option to rabies immunoglobulin. Arch Virol 161, 2537–2541 (2016). https://doi.org/10.1007/s00705-016-2916-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-2916-6

Keywords

Navigation