Skip to main content

Advertisement

Log in

Development of single-chain variable fragments (scFv) against influenza virus targeting hemagglutinin subunit 2 (HA2)

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Influenza A viruses (IAV) are widespread in birds and domestic poultry, occasionally causing severe epidemics in humans and posing health threats. Hence, the need to develop a strategy for prophylaxis or therapy, such as a broadly neutralizing antibody against IAV, is urgent. In this study, single-chain variable fragment (scFv) phage display technology was used to select scFv fragments recognizing influenza envelope proteins. The Tomlinson I and J scFv phage display libraries were screened against the recombinant HA2 protein (rHA2) for three rounds. Only the third-round elution sample of the Tomlinson J library showed high binding affinity to rHA2, from which three clones (3JA18, 3JA62, and 3JA78) were chosen for preparative-scale production as soluble antibody by E. coli. The clone 3JA18 was selected for further tests due to its broad affinity for influenza H1N1, H3N2 and H5N1. Simulations of the scFv 3JA18-HA trimer complex revealed that the complementarity-determining region of the variable heavy chain (VH-CDR2) bound the stem region of HA. Neutralization assays using a peptide derived from VH-CDR2 also supported the simulation model. Both the selected antibody and its derived peptide were shown to suppress infection with H5N1 and H1N1 viruses, but not H3N2 viruses. The results also suggested that the scFvs selected from rHA2 could have neutralizing activity by interfering with the function of the HA stem region during virus entry into target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Peiris JS, de Jong MD, Guan Y (2007) Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 20(2):243–267. doi:10.1128/CMR.00037-06

    Article  PubMed  PubMed Central  Google Scholar 

  2. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA (2004) Mapping the antigenic and genetic evolution of influenza virus. Science 305(5682):371–376. doi:10.1126/science.1097211

    Article  PubMed  CAS  Google Scholar 

  3. Lynch GW, Selleck P, Church WB, Sullivan JS (2012) Seasoned adaptive antibody immunity for highly pathogenic pandemic influenza in humans. Immunol Cell Biol 90(2):149–158. doi:10.1038/icb.2011.38

    Article  PubMed  CAS  Google Scholar 

  4. Mei L, Song P, Tang Q, Shan K, Tobe RG, Selotlegeng L, Ali AH, Cheng Y, Xu L (2013) Changes in and shortcomings of control strategies, drug stockpiles, and vaccine development during outbreaks of avian influenza A H5N1, H1N1, and H7N9 among humans. Biosci Trends 7(2):64–76 (656 [pii])

    PubMed  Google Scholar 

  5. Moscona A (2009) Global transmission of oseltamivir-resistant influenza. N Engl J Med 360(10):953–956. doi:10.1056/NEJMp0900648

    Article  PubMed  CAS  Google Scholar 

  6. Pielak RM, Schnell JR, Chou JJ (2009) Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proc Natl Acad Sci USA 106(18):7379–7384. doi:10.1073/pnas.0902548106

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang H, Hale BG, Xu K, Sun B (2013) Viral and host factors required for avian H5N1 influenza A virus replication in mammalian cells. Viruses 5(6):1431–1446. doi:10.3390/v5061431

    Article  PubMed  PubMed Central  Google Scholar 

  8. Skehel JJ, Wiley DC (2000) Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69:531–569. doi:10.1146/annurev.biochem.69.1.531

    Article  PubMed  CAS  Google Scholar 

  9. Vareckova E, Mucha V, Kostolansky F (2013) HA2 glycopolypeptide of influenza A virus and antiviral immunity. Acta Virol 57(2):247–256. doi:10.4149/av_2013_02_247

    Article  PubMed  CAS  Google Scholar 

  10. Whittle JRR, Zhang RJ, Khurana S, King LR, Manischewitz J, Golding H, Dormitzer PR, Haynes BF, Walter EB, Moody MA, Kepler TB, Liao HX, Harrison SC (2011) Broadly neutralizing human antibody that recognizes the receptor-binding pocket of influenza virus hemagglutinin. Proc Natl Acad Sci USA 108(34):14216–14221. doi:10.1073/pnas.1111497108

    Article  PubMed  PubMed Central  Google Scholar 

  11. Krause JC, Tsibane T, Tumpey TM, Huffman CJ, Basler CF, Crowe JE (2011) A broadly neutralizing human monoclonal antibody that recognizes a conserved, novel epitope on the globular head of the influenza H1N1 virus hemagglutinin. J Virol 85(20):10905–10908. doi:10.1128/Jvi.00700-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Ekiert DC, Kashyap AK, Steel J, Rubrum A, Bhabha G, Khayat R, Lee JH, Dillon MA, O’Neil RE, Faynboym AM, Horowitz M, Horowitz L, Ward AB, Palese P, Webby R, Lerner RA, Bhatt RR, Wilson IA (2012) Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489(7417):526. doi:10.1038/Nature11414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Prabhu N, Prabakaran M, Ho HT, Velumani S, Qiang J, Goutama M, Kwang J (2009) Monoclonal antibodies against the fusion peptide of hemagglutinin protect mice from lethal influenza A virus H5N1 infection. J Virol 83(6):2553–2562. doi:10.1128/JVI.02165-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Throsby M, van den Brink E, Jongeneelen M, Poon LL, Alard P, Cornelissen L, Bakker A, Cox F, van Deventer E, Guan Y, Cinatl J, ter Meulen J, Lasters I, Carsetti R, Peiris M, de Kruif J, Goudsmit J (2008) Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One 3(12):e3942. doi:10.1371/journal.pone.0003942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sui J, Hwang WC, Perez S, Wei G, Aird D, Chen LM, Santelli E, Stec B, Cadwell G, Ali M, Wan H, Murakami A, Yammanuru A, Han T, Cox NJ, Bankston LA, Donis RO, Liddington RC, Marasco WA (2009) Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 16(3):265–273. doi:10.1038/nsmb.1566

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Corti D, Voss J, Gamblin SJ, Codoni G, Macagno A, Jarrossay D, Vachieri SG, Pinna D, Minola A, Vanzetta F, Silacci C, Fernandez-Rodriguez BM, Agatic G, Bianchi S, Giacchetto-Sasselli I, Calder L, Sallusto F, Collins P, Haire LF, Temperton N, Langedijk JP, Skehel JJ, Lanzavecchia A (2011) A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333(6044):850–856. doi:10.1126/science.1205669

    Article  PubMed  CAS  Google Scholar 

  17. Schneemann A, Speir JA, Tan GS, Khayat R, Ekiert DC, Matsuoka Y, Wilson IA (2012) A virus-like particle that elicits cross-reactive antibodies to the conserved stem of influenza virus hemagglutinin. J Virol 86(21):11686–11697. doi:10.1128/JVI.01694-12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ekiert DC, Bhabha G, Elsliger MA, Friesen RH, Jongeneelen M, Throsby M, Goudsmit J, Wilson IA (2009) Antibody recognition of a highly conserved influenza virus epitope. Science 324(5924):246–251. doi:10.1126/science.1171491

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Burton DR, Poignard P, Stanfield RL, Wilson IA (2012) Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 337(6091):183–186. doi:10.1126/science.1225416

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Brandenburg B, Koudstaal W, Goudsmit J, Klaren V, Tang C, Bujny MV, Korse HJWM, Kwaks T, Otterstrom JJ, Juraszek J, van Oijen AM, Vogels R, Friesen RHE (2013) Mechanisms of hemagglutinin targeted influenza virus neutralization. PLoS One. doi:10.1371/journal.pone.0080034

    PubMed  PubMed Central  Google Scholar 

  21. Carmen S, Jermutus L (2002) Concepts in antibody phage display. Brief Funct Genomic Proteomic 1(2):189–203

    Article  PubMed  CAS  Google Scholar 

  22. Pansri P, Jaruseranee N, Rangnoi K, Kristensen P, Yamabhai M (2009) A compact phage display human scFv library for selection of antibodies to a wide variety of antigens. BMC Biotechnol 9:6. doi:10.1186/1472-6750-9-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kierny MR, Cunningham TD, Kay BK (2012) Detection of biomarkers using recombinant antibodies coupled to nanostructured platforms. Nano Rev. doi:10.3402/nano.v3i0.17240

    PubMed  PubMed Central  Google Scholar 

  24. Li ZJ, Cho CH (2012) Peptides as targeting probes against tumor vasculature for diagnosis and drug delivery. J Transl Med. doi:10.1186/1479-5876-10-S1-S1

    Google Scholar 

  25. Eisenhardt SU, Schwarz M, Bassler N, Peter K (2007) Subtractive single-chain antibody (scFv) phage-display: tailoring phage-display for high specificity against function-specific conformations of cell membrane molecules. Nat Protoc 2(12):3063–3073. doi:10.1038/nprot.2007.455

    Article  PubMed  CAS  Google Scholar 

  26. Ueberberg S, Schneider S (2010) Phage library-screening: a powerful approach for generation of targeting-agents specific for normal pancreatic islet-cells and islet-cell carcinoma in vivo. Regul Pept 160(1–3):1–8. doi:10.1016/j.regpep.2009.11.017

    Article  PubMed  CAS  Google Scholar 

  27. Poungpair O, Chaicumpa W, Kulkeaw K, Maneewatch S, Thueng-in K, Srimanote P, Tongtawe P, Songserm T, Lekcharoensuk P, Tapchaisri P (2009) Human single chain monoclonal antibody that recognizes matrix protein of heterologous influenza A virus subtypes. J Virol Methods 159(1):105–111. doi:10.1016/j.jviromet.2009.03.010

    Article  PubMed  CAS  Google Scholar 

  28. Yodsheewan R, Maneewatch S, Srimanote P, Thueng-In K, Songserm T, Dong-Din-On F, Bangphoomi K, Sookrung N, Choowongkomon K, Chaicumpa W (2013) Human monoclonal ScFv specific to NS1 protein inhibits replication of influenza viruses across types and subtypes. Antiviral Res 100(1):226–237. doi:10.1016/j.antiviral.2013.07.019

    Article  PubMed  CAS  Google Scholar 

  29. Zhang X, Qi X, Zhang Q, Zeng X, Shi Z, Jin Q, Zhan F, Xu Y, Liu Z, Feng Z, Jiao Y (2013) Human 4F5 single-chain Fv antibody recognizing a conserved HA1 epitope has broad neutralizing potency against H5N1 influenza A viruses of different clades. Antiviral Res 99(2):91–99. doi:10.1016/j.antiviral.2013.05.001

    Article  PubMed  CAS  Google Scholar 

  30. de Wildt RM, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18(9):989–994. doi:10.1038/79494

    Article  PubMed  CAS  Google Scholar 

  31. Lin SC, Jan JT, Dionne B, Butler M, Huang MH, Wu CY, Wong CH, Wu SC (2013) Different immunity elicited by recombinant H5N1 hemagglutinin proteins containing pauci-mannose, high-mannose, or complex type N-glycans. PLoS One 8(6):e66719. doi:10.1371/journal.pone.0066719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wu CY, Yeh YC, Yang YC, Chou C, Liu MT, Wu HS, Chan JT, Hsiao PW (2010) Mammalian expression of virus-like particles for advanced mimicry of authentic influenza virus. PLoS One. doi:10.1371/Journal.Pone.0009784

    Google Scholar 

  33. Lin Y, Wu C, Li T, Hsiao P, Chang D (2014) A rapid and sensitive early diagnosis of influenza virus subtype via surface enhanced raman scattering. J Biosens Bioelectron 5(150):2

    Google Scholar 

  34. Imai M, Watanabe T, Hatta M, Das SC, Ozawa M, Shinya K, Zhong G, Hanson A, Katsura H, Watanabe S, Li C, Kawakami E, Yamada S, Kiso M, Suzuki Y, Maher EA, Neumann G, Kawaoka Y (2012) Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486(7403):420–428. doi:10.1038/nature10831

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Chang DK, Cheng SF, Deo Trivedi V, Yang SH (2000) The amino-terminal region of the fusion peptide of influenza virus hemagglutinin HA2 inserts into sodium dodecyl sulfate micelle with residues 16-18 at the aqueous boundary at acidic pH. Oligomerization and the conformational flexibility. J Biol Chem 275(25):19150–19158. doi:10.1074/jbc.M907148199

    Article  PubMed  CAS  Google Scholar 

  36. Chen J, Skehel JJ, Wiley DC (1998) A polar octapeptide fused to the N-terminal fusion peptide solubilizes the influenza virus HA2 subunit ectodomain. Biochemistry 37(39):13643–13649. doi:10.1021/bi981098l

    Article  PubMed  CAS  Google Scholar 

  37. Wang Y, Zhang X, Zhang C, Liu Y, Liu X (2012) Isolation of single chain variable fragment (scFv) specific for Cry1C toxin from human single fold scFv libraries. Toxicon 60(7):1290–1297. doi:10.1016/j.toxicon.2012.08.014

    Article  PubMed  CAS  Google Scholar 

  38. Nefkens I, Garcia JM, Ling CS, Lagarde N, Nicholls J, Tang DJ, Peiris M, Buchy P, Altmeyer R (2007) Hemagglutinin pseudotyped lentiviral particles: characterization of a new method for avian H5N1 influenza sero-diagnosis. J Clin Virol 39(1):27–33. doi:10.1016/j.jcv.2007.02.005

    Article  PubMed  CAS  Google Scholar 

  39. Wu J, Zeng XQ, Zhang HB, Ni HZ, Pei L, Zou LR, Liang LJ, Zhang X, Lin JY, Ke CW (2014) Novel phage display-derived H5N1-specific scFvs with potential use in rapid avian flu diagnosis. J Microbiol Biotechnol 24(5):704–713. doi:10.4014/jmb.1311.11107

    Article  PubMed  CAS  Google Scholar 

  40. Dreyfus C, Laursen NS, Kwaks T, Zuijdgeest D, Khayat R, Ekiert DC, Lee JH, Metlagel Z, Bujny MV, Jongeneelen M, van der Vlugt R, Lamrani M, Korse HJ, Geelen E, Sahin O, Sieuwerts M, Brakenhoff JP, Vogels R, Li OT, Poon LL, Peiris M, Koudstaal W, Ward AB, Wilson IA, Goudsmit J, Friesen RH (2012) Highly conserved protective epitopes on influenza B viruses. Science 337(6100):1343–1348. doi:10.1126/science.1222908

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tharakaraman K, Subramanian V, Cain D, Sasisekharan V, Sasisekharan R (2014) Broadly neutralizing influenza hemagglutinin stem-specific antibody CR8020 targets residues that are prone to escape due to host selection pressure. Cell Host Microbe 15(5):644–651. doi:10.1016/j.chom.2014.04.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ekiert DC, Friesen RH, Bhabha G, Kwaks T, Jongeneelen M, Yu W, Ophorst C, Cox F, Korse HJ, Brandenburg B, Vogels R, Brakenhoff JP, Kompier R, Koldijk MH, Cornelissen LA, Poon LL, Peiris M, Koudstaal W, Wilson IA, Goudsmit J (2011) A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333(6044):843–850. doi:10.1126/science.1204839

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Russell RJ, Kerry PS, Stevens DJ, Steinhauer DA, Martin SR, Gamblin SJ, Skehel JJ (2008) Structure of influenza hemagglutinin in complex with an inhibitor of membrane fusion. Proc Natl Acad Sci USA 105(46):17736–17741. doi:10.1073/pnas.0807142105

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, Strauch EM, Wilson IA, Baker D (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332(6031):816–821. doi:10.1126/science.1202617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Nabel GJ, Fauci AS (2010) Induction of unnatural immunity: prospects for a broadly protective universal influenza vaccine. Nature medicine 16(12):1389–1391. doi:10.1038/nm1210-1389

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science and Technology, Taiwan (grant number 99-2113-M-001-024-MY3 and 102-2113-M-001-008-MY2). We thank Dr. Jia-Tsrong Jan and Hsiu-Hwa Ma (Genomics Research Center, Academia Sinica) for providing us with influenza viruses. We thank Dr. Hsien-Ming Lee (Institute of Chemistry, Academia Sinica) for providing the microscopy system. We also thank Dr. Han-Chung Wu and Dr. Ruei-Min Lu (Institute of Cellular and Organismic Biology, Academia Sinica) for discussion on the experimental design of the scFv technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding-Kwo Chang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, TW., Cheng, SF., Tseng, YT. et al. Development of single-chain variable fragments (scFv) against influenza virus targeting hemagglutinin subunit 2 (HA2). Arch Virol 161, 19–31 (2016). https://doi.org/10.1007/s00705-015-2625-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2625-6

Keywords

Navigation