Skip to main content

Advertisement

Log in

A study of lymphoid organs and serum proinflammatory cytokines in pigs infected with African swine fever virus genotype II

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

African swine fever virus (ASFV), the causative agent of one of the most important viral diseases of domestic pigs for which no vaccine is available, causes immune system disorders in infected animals. In this study, the serum levels of proinflammatory cytokines, as well as the histological and cellular constitution of lymphoid organs of pigs infected with ASFV genotype II were investigated. The results showed a high degree of lymphocyte depletion in the lymphoid organs, particularly in the spleen and lymph nodes, where ASFV infection led to a twofold decrease in the number of lymphocytes on the final day of infection. Additionally, ASFV-infected pigs had atypical forms of lymphocytes found in all lymphoid organs. In contrast to lymphocytes, the number of immature immune cells, particularly myelocytes, increased dramatically and reached a maximum on day 7 postinfection. The serum levels of TNF-α, IL-1β, IL-6, and IL-8 were evaluated. Proinflammatory cytokines showed increased levels after ASFV infection, with peak values at 7 days postinfection, and this highlights their role in the pathogenesis of ASFV. In conclusion, this study showed that ASFV genotype II, like other highly virulent strains, causes severe pathological changes in the immune system of pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Blome S, Gabriel C, Beer M (2013) Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res 173:122–130

    Article  CAS  PubMed  Google Scholar 

  2. Burrage T (2013) African swine fever virus infection in Ornithodoros ticks. Virus Res 173:131–139

    Article  CAS  PubMed  Google Scholar 

  3. Carrasco L, Bautista MJ, Martin de las Mulas J, Gómez-Villamandos JC, Espinosa de los Monteros A, Sierra MA (1995) Description of a new population of fixed macrophages in the splenic cords of pigs. J Anat 187:395–402

    PubMed Central  PubMed  Google Scholar 

  4. Carrasco L, de Lara FC, Martín de las Mulas J, Gómez-Villamandos JC, Pérez J, Wilkinson PJ, Sierra MA (1996) Apoptosis in lymph nodes in acute African swine fever. J Comp Pathol 115:415–428

    Article  CAS  PubMed  Google Scholar 

  5. Carrasco L, Gómez-Villamandos JC, Bautista MJ, Martín de las Mulas J, Villeda CJ, Wilkinson PJ, Sierra MA (1996) In vivo replication of African swine fever virus (Malawi ‘83) in neutrophils. Vet Res 27:55–62

    CAS  PubMed  Google Scholar 

  6. Carrasco L, Bautista MJ, Gómez-Villamandos JC, Martin de las Mulas J, Chacón-M de Lara F, Wilkinson PJ, Sierra MA (1997) Development of microscopic lesions in splenic cords of pigs infected with African swine fever virus. Vet Res 28:93–99

    CAS  PubMed  Google Scholar 

  7. Carrasco L, Chàcón-M de Lara F, de Las Martín, Mulas J, Gómez-Villamandos JC, Sierra MA, Villeda CJ, Wilkinson PJ (1997) Ultrastructural changes related to the lymph node haemorrhages in acute African swine fever. Res Vet Sci 62:199–204

    Article  CAS  PubMed  Google Scholar 

  8. Carrascosa AL, Bustos MJ, de Leon P (2011) Methods for growing and titrating African swine fever virus: field and laboratory samples. Curr Protoc Cell Biol Chapter 26:Unit 26.14

  9. Chapman DA, Darby AC, Da Silva M, Upton C, Radford AD, Dixon LK (2011) Genomic analysis of highly virulent Georgia 2007/1 isolate of African swine fever virus. Emerg Infect Dis 17:599–605

    Article  PubMed Central  PubMed  Google Scholar 

  10. Dixon LK, Abrams CC, Chapman DD, Goatley LC, Netherton CL, Taylor G, Takamatsu HH (2013) Prospects for development of African swine fever virus vaccines. Dev Biol (Basel) 135:147–157

    CAS  Google Scholar 

  11. Ekue NF, Wilkinson PJ, Wardley RC (1989) Infection of pigs with the Cameroon isolate (Cam/82) of African swine fever virus. J Comp Pathol 100:145–154

    Article  CAS  PubMed  Google Scholar 

  12. Enjuanes L, Carrascosa AL, Moreno MA, Viñuela E (1976) Titration of African swine fever (ASF) virus. J Gen Virol 32:471–477

    Article  CAS  PubMed  Google Scholar 

  13. Fujita T, Yoshimoto T, Matsuda S, Kajiya M, Kittaka M, Imai H, Iwata T, Uchida Y, Shiba H, Kurihara H (2014) Interleukin-8 induces DNA synthesis, migration and down-regulation of cleaved caspase-3 in cultured human gingival epithelial cells. J Periodontal Res. doi:10.1111/jre.12230. [Epub ahead of print]

  14. Gómez del Moral M, Ortuño E, Fernández-Zapatero P, Alonso F, Alonso C, Ezquerra A, Domínguez J (1999) African swine fever virus infection induces tumor necrosis factor alpha production: implications in pathogenesis. J Virol 73:2173–2180

    PubMed Central  PubMed  Google Scholar 

  15. Gómez-Villamandos JC, Bautista MJ, Hervás J, Carrasco L, de Lara FC, Pérez J, Wilkinson PJ, Sierra MA (1996) Subcellular changes in platelets in acute and subacute African swine fever. J Comp Pathol 115:327–341

    Article  PubMed  Google Scholar 

  16. Gómez-Villamandos JC, Bautista MJ, Carrasco L, Caballero MJ, Hervás J, Villeda CJ, Wilkinson PJ, Sierra MA (1997) African swine fever virus infection of bone marrow: lesions and pathogenesis. Vet Pathol 34:97–107

    Article  PubMed  Google Scholar 

  17. Gómez-Villamandos JC, Carrasco L, Bautista MJ, Sierra MA, Quezada M, Hervas J, Chacón Mde L, Ruiz-Villamor E, Salguero FJ, Sónchez-Cordón PJ, Romanini S, Núñez A, Mekonen T, Méndez A, Jover A (2003) African swine fever and classical swine fever: a review of the pathogenesis. Dtsch Tierarztl Wochenschr 110:165–169

    PubMed  Google Scholar 

  18. Gómez-Villamandos JC, Bautista MJ, Sánchez-Cordón PJ, Carrasco L (2013) Pathology of African swine fever: the role of monocyte-macrophage. Virus Res 173:140–149

    Article  PubMed  Google Scholar 

  19. Howey EB, O’Donnell V, de Carvalho Ferreira HC, Borca MV, Arzt J (2013) Pathogenesis of highly virulent African swine fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs. Virus Res 178:328–339

    Article  CAS  PubMed  Google Scholar 

  20. Karalova EM, Sargsyan KhV, Hampikian GK, Voskanyan HE, Abroyan LO, Avetisyan AS, Hakobyan LA, Arzumanyan HH, Zakaryan HS, Karalyan ZA (2011) Phenotypic and cytologic studies of lymphoid cells and monocytes in primary culture of porcine bone marrow during infection of African swine fever virus. In Vitro Cell Dev Biol Anim 47:200–204

    Article  CAS  PubMed  Google Scholar 

  21. Karalyan Z, Zakaryan H, Arzumanyan H, Sargsyan K, Voskanyan H, Hakobyan L, Abroyan L, Avetisyan A, Karalova E (2012) Pathology of porcine peripheral white blood cells during infection with African swine fever virus. BMC Vet Res 8:18

    Article  PubMed Central  PubMed  Google Scholar 

  22. Karalyan Z, Zakaryan H, Sargsyan Kh, Voskanyan H, Arzumanyan H, Avagyan H, Karalova E (2012) Interferon status and white blood cells during infection with African swine fever virus in vivo. Vet Immunol Immunopathol 145:551–555

    Article  CAS  PubMed  Google Scholar 

  23. Lafon M (2011) Evasive strategies in rabies virus infection. Adv Virus Res 79:33–53

    Article  CAS  PubMed  Google Scholar 

  24. Mohamadzadeh M (2009) Potential factors induced by filoviruses that lead to immune supression. Curr Mol Med 9:174–185

    Article  CAS  PubMed  Google Scholar 

  25. Oura CA, Powell PP, Parkhouse RM (1998) African swine fever: a disease characterized by apoptosis. J Gen Virol 79:1427–1438

    CAS  PubMed  Google Scholar 

  26. Ramiro-Ibáñez F, Ortega A, Brun A, Escribano JM, Alonso C (1996) Apoptosis: a mechanism of cell killing and lymphoid organ impairment during acute African swine fever virus infection. J Gen Virol 77:2209–2219

    Article  PubMed  Google Scholar 

  27. Rowlands RJ, Michaud V, Heath L, Hutchings G, Oura C, Vosloo W, Dwarka R, Onashvili T, Albina E, Dixon LK (2008) African swine fever virus isolate, Georgia, 2007. Emerg Infect Dis 14:1870–1874

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Salguero FJ, Ruiz-Villamor E, Bautista MJ, Sánchez-Cordón PJ, Carrasco L, Gómez-Villamandos JC (2002) Changes in macrophages in spleen and lymph nodes during acute African swine fever: expression of cytokines. Vet Immunol Immunopathol 90:11–22

    Article  CAS  PubMed  Google Scholar 

  29. Salguero FJ, Sánchez-Cordón PJ, Núñez A, Fernández de Marco M, Gómez-Villamandos JC (2005) Proinflammatory cytokines induce lymphocyte apoptosis in acute African swine fever infection. J Comp Pathol 132:289–302

    Article  CAS  PubMed  Google Scholar 

  30. Schat KA (2009) Chicken anemia virus. Curr Top Microbiol Immunol 331:151–183

    CAS  PubMed  Google Scholar 

  31. Stier H, Leucht W (1980) Blood sampling from the venous ophthalmic sinus of miniature swine. Z Versuchstierkd 22:161–164

    CAS  PubMed  Google Scholar 

  32. Takamatsu H, Denyer MS, Oura C, Childerstone A, Andersen JK, Pullen L, Parkhouse RM (1999) African swine fever virus: a B cell-mitogenic virus in vivo and in vitro. J Gen Virol 80:1453–1461

    CAS  PubMed  Google Scholar 

  33. Takamatsu H, Martins C, Escribano JM, Alonso C, Dixon LK, Salas ML, Revilla Y (2011) Asfarviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy. Ninth report of the ICTV. Elsevier, Oxford, pp 153–162

    Google Scholar 

  34. Varbanov M, Espert L, Biard-Piechaczyk M (2006) Mechanisms of CD4 T-cell depletion triggered by HIV-1 viral proteins. AIDS Rev 8:221–236

    PubMed  Google Scholar 

  35. Wang Y, Juan LV, Ma X, Wang D, Ma H, Chang Y, Nie G, Jia L, Duan X, Liang XJ (2010) Specific hemosiderin deposition in spleen induced by a low dose of cisplatin: altered iron metabolism and its implication as an acute hemosiderin formation model. Curr Drug Metab 11:507–515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Wardley RC, Wilkinson PJ, Hamilton F (1977) African swine fever virus replication in porcine lymphocytes. J Gen Virol 37:425–427

    Article  CAS  PubMed  Google Scholar 

  37. Zakaryan H, Karalova E, Voskanyan H, Ter-Pogossyan Z, Nersisyan N, Hakobyan A, Saroyan D, Karalyan Z (2014) Evaluation of hemostaseological status of pigs experimentally infected with African swine fever virus. Vet Microbiol 174:223–228

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Institute of Molecular Biology of NAS RA. The authors thank laboratory members, as well as all reviewers for their time spent on reviewing the manuscript, and for the helpful comments and suggestions.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaven Karalyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakaryan, H., Cholakyans, V., Simonyan, L. et al. A study of lymphoid organs and serum proinflammatory cytokines in pigs infected with African swine fever virus genotype II. Arch Virol 160, 1407–1414 (2015). https://doi.org/10.1007/s00705-015-2401-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2401-7

Keywords

Navigation