Skip to main content

Advertisement

Log in

Porcine complement regulatory protein CD46 and heparan sulfates are the major factors for classical swine fever virus attachment in vitro

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Classical swine fever virus (CSFV) is the causative agent of a severe multi-systemic disease of pigs. While several aspects of virus-host-interaction are known, the early steps of infection remain unclear. For the closely related bovine viral diarrhea virus (BVDV), a cellular receptor is known: bovine complement regulatory protein CD46. Given that these two pestiviruses are closely related, porcine CD46 is also a candidate receptor for CSFV. In addition to CD46, cell-culture-adapted CSFV strains have been shown to use heparan sulfates as an additional cellular factor. In the present study, the interaction of field-type and cell-culture-adapted CSFV with a permanent porcine cell line or primary macrophages was assessed using anti-porcine CD46 monoclonal antibodies and a heparan-sulfate-blocking compound, DSTP-27. The influence of receptor blocking was assessed using virus titration and quantitative PCR. Treatment of cells with monoclonal antibodies against porcine CD46 led to a reduction of viral growth in both cell types. The effect was most pronounced with field-type CSFV. The blocking could be enhanced by addition of DSTP-27, especially for cell-culture-adapted CSFV. The combined use of both blocking agents led to a significant reduction of viral growth but was also not able to abolish infection completely. The results obtained in this study showed that both porcine CD46 and heparan sulfates play a major role in the initial steps of CSFV infection. Additional receptors might also play a role for attachment and entry; however, their impact is obviously limited in vitro in comparison to CD46 and heparan sulfates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Edwards S, Fukusho A, Lefevre PC, Lipowski A, Pejsak Z, Roehe P et al (2000) Classical swine fever: the global situation. Vet Microbiol 73:103–119

    Article  CAS  PubMed  Google Scholar 

  2. Lindenbach BD, Thiel HJ, Rice CM (2007) Flaviviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott-Raven Publishers, Philadelphia, pp 1101–1152

    Google Scholar 

  3. Stahl K, Beer M, Schirrmeier H, Hoffmann B, Belak S, Alenius S (2010) Atypical ‘HoBi’-like pestiviruses–recent findings and implications thereof. Vet Microbiol 142:90–93

    Article  CAS  PubMed  Google Scholar 

  4. Kirkland PD, Frost MJ, Finlaison DS, King KR, Ridpath JF, Gu X (2007) Identification of a novel virus in pigs–Bungowannah virus: a possible new species of pestivirus. Virus Res 129:26–34

    Article  CAS  PubMed  Google Scholar 

  5. Vilcek S, Durkovic B, Kolesarova M, Paton DJ (2005) Genetic diversity of BVDV: consequences for classification and molecular epidemiology. Prev Vet Med 72:31–35 (discussion 215–219)

    Article  CAS  PubMed  Google Scholar 

  6. Vilcek S, Nettleton PF (2006) Pestiviruses in wild animals. Vet Microbiol 116:1–12

    Article  CAS  PubMed  Google Scholar 

  7. Thabti F, Letellier C, Hammami S, Pepin M, Ribiere M, Mesplede A et al (2005) Detection of a novel border disease virus subgroup in Tunisian sheep. Arch Virol 150:215–229

    Article  CAS  PubMed  Google Scholar 

  8. Becher P, Avalos Ramirez R, Orlich M, Cedillo Rosales S, Konig M, Schweizer M et al (2003) Genetic and antigenic characterization of novel pestivirus genotypes: implications for classification. Virology 311:96–104

    Article  CAS  PubMed  Google Scholar 

  9. Harasawa R, Giangaspero M, Ibata G, Paton DJ (2000) Giraffe strain of pestivirus: its taxonomic status based on the 5’-untranslated region. Microbiol Immunol 44:915–921

    Article  CAS  PubMed  Google Scholar 

  10. Thiel HJ, Collett MS, Gould EA, Heinz FX, Houghton M, Meyers G, Purcell RH, Rice CM (2005) Genus pestivirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. Eighth report of the international committee on taxonomy of viruses. Elsevier Academic Press, London, pp 988–992

    Google Scholar 

  11. Rümenapf T, Meyers G, Stark R, Thiel HJ (1991) Molecular characterization of hog cholera virus. Arch Virol Suppl 3:7–18

    Article  PubMed  Google Scholar 

  12. Rümenapf T, Unger G, Strauss JH, Thiel HJ (1993) Processing of the envelope glycoproteins of pestiviruses. J Virol 67:3288–3294

    PubMed Central  PubMed  Google Scholar 

  13. Thiel HJ, Stark R, Weiland E, Rümenapf T, Meyers G (1991) Hog cholera virus: molecular composition of virions from a pestivirus. J Virol 65:4705–4712

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Hulst MM, Moormann RJ (1997) Inhibition of pestivirus infection in cell culture by envelope proteins E(rns) and E2 of classical swine fever virus: E(rns) and E2 interact with different receptors. J Gen Virol 78(Pt 11):2779–2787

    CAS  PubMed  Google Scholar 

  15. Ronecker S, Zimmer G, Herrler G, Greiser-Wilke I, Grummer B (2008) Formation of bovine viral diarrhea virus E1–E2 heterodimers is essential for virus entry and depends on charged residues in the transmembrane domains. J Gen Virol 89:2114–2121

    Article  CAS  PubMed  Google Scholar 

  16. Wang Z, Nie Y, Wang P, Ding M, Deng H (2004) Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry. Virology 330:332–341

    Article  CAS  PubMed  Google Scholar 

  17. Grummer B, Grotha S, Greiser-Wilke I (2004) Bovine viral diarrhoea virus is internalized by clathrin-dependent receptor-mediated endocytosis. J Vet Med B Infect Dis Vet Public Health 51:427–432

    Article  CAS  PubMed  Google Scholar 

  18. Krey T, Himmelreich A, Heimann M, Menge C, Thiel HJ, Maurer K et al (2006) Function of bovine CD46 as a cellular receptor for bovine viral diarrhea virus is determined by complement control protein 1. J Virol 80:3912–3922

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Maurer K, Krey T, Moennig V, Thiel HJ, Rümenapf T (2004) CD46 is a cellular receptor for bovine viral diarrhea virus. J Virol 78:1792–1799

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Schelp C, Greiser-Wilke I, Moennig V (2000) An actin-binding protein is involved in pestivirus entry into bovine cells. Virus Res 68:1–5

    Article  CAS  PubMed  Google Scholar 

  21. Schneider R, Unger G, Stark R, Schneider-Scherzer E, Thiel HJ (1993) Identification of a structural glycoprotein of an RNA virus as a ribonuclease. Science 261:1169–1171

    Article  CAS  PubMed  Google Scholar 

  22. Hulst MM, van Gennip HG, Vlot AC, Schooten E, de Smit AJ, Moormann RJ (2001) Interaction of classical swine fever virus with membrane-associated heparan sulfate: role for virus replication in vivo and virulence. J Virol 75:9585–9595

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Iqbal M, Flick-Smith H, McCauley JW (2000) Interactions of bovine viral diarrhoea virus glycoprotein E(rns) with cell surface glycosaminoglycans. J Gen Virol 81:451–459

    CAS  PubMed  Google Scholar 

  24. Hulst MM, van Gennip HG, Moormann RJ (2000) Passage of classical swine fever virus in cultured swine kidney cells selects virus variants that bind to heparan sulfate due to a single amino acid change in envelope protein E(rns). J Virol 74:9553–9561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Eymann-Häni R, Leifer I, McCullough KC, Summerfield A, Ruggli N (2011) Propagation of classical swine fever virus in vitro circumventing heparan sulfate-adaptation. J Virol Methods 176:85–95

    Article  PubMed  Google Scholar 

  26. El Omari K, Iourin O, Harlos K, Grimes JM, Stuart DI (2013) Structure of a pestivirus envelope glycoprotein E2 clarifies its role in cell entry. Cell reports 3:30–35

    Article  PubMed Central  PubMed  Google Scholar 

  27. Li Y, Wang J, Kanai R, Modis Y (2013) Crystal structure of glycoprotein E2 from bovine viral diarrhea virus. Proc Natl Acad Sci USA 110:6805–6810

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Tscherne DM, Evans MJ, Macdonald MR, Rice CM (2008) Transdominant inhibition of bovine viral diarrhea virus entry. J Virol 82:2427–2436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Leifer I, Hoffmann B, Höper D, Bruun Rasmussen T, Blome S, Strebelow G et al (2010) Molecular epidemiology of current classical swine fever virus isolates of wild boar in Germany. J Gen Virol 91:2687–2697

    Article  CAS  PubMed  Google Scholar 

  30. Schmidtke M, Riabova O, Dahse HM, Stelzner A, Makarov V (2002) Synthesis, cytotoxicity and antiviral activity of N,N′-bis-5-nitropyrimidyl derivatives of dispirotripiperazine. Antiviral Res 55:117–127

    Article  CAS  PubMed  Google Scholar 

  31. Hoffmann B, Depner K, Schirrmeier H, Beer M (2006) A universal heterologous internal control system for duplex real-time RT-PCR assays used in a detection system for pestiviruses. J Virol Methods 136:200–209

    Article  CAS  PubMed  Google Scholar 

  32. Hoffmann B, Beer M, Schelp C, Schirrmeier H, Depner K (2005) Validation of a real-time RT-PCR assay for sensitive and specific detection of classical swine fever. J Virol Methods 130:36–44

    Article  CAS  PubMed  Google Scholar 

  33. Lecot S, Belouzard S, Dubuisson J, Rouille Y (2005) Bovine viral diarrhea virus entry is dependent on clathrin-mediated endocytosis. J Virol 79:10826–10829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Schmidtke M, Karger A, Meerbach A, Egerer R, Stelzner A, Makarov V (2003) Binding of a N,N′-bisheteryl derivative of dispirotripiperazine to heparan sulfate residues on the cell surface specifically prevents infection of viruses from different families. Virology 311:134–143

    Article  CAS  PubMed  Google Scholar 

  35. Gomez-Villamandos JC, Carrasco L, Bautista MJ, Sierra MA, Quezada M, Hervas J et al (2003) African swine fever and classical swine fever: a review of the pathogenesis. Dtsch Tierarztl Wochenschr 110:165–169

    CAS  PubMed  Google Scholar 

  36. Petrov A, Blohm U, Beer M, Pietschmann J, Blome S (2014) Comparative analyses of host responses upon infection with moderately virulent Classical swine fever virus in domestic pigs and wild boar. Virol J 11:134

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Anja Petrov, Ulrike Kleinert, Kristin Trippler, and Jana Pietschmann for technical assistance, and Michaela Schmidtke for kindly providing DSTP-27.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Blome.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2014_2313_MOESM1_ESM.ppt

Supplementary Figure S1 Titration of supernatants from blocking assays on PBMC-derived macrophages with the field-type 2nd passage of CSFV “Roesrath” (A) and the cell-culture-adapted 26th passage of CSFV “Roesrath” (B). The results are presented as logTCID50/100 µl. Treatments were as follows: 1 = untreated cell control, 2 = anti-CD46 mabs, 3 = DSTP-27, 4 = anti-CD46 mabs and DSTP-27, 5 = irrelevant SWC3 mab (PPT 210 kb)

705_2014_2313_MOESM2_ESM.ppt

Supplementary Figure S2 Quantification of viral genomes in supernatants of blocking assays on PBMC-derived macrophages with the field-type 2nd passage of CSFV “Roesrath” (A) and the cell-culture-adapted 26th passage of CSFV “Roesrath” (B). Quantification was done by RT-qPCR. The results are presented as genome copies per well. Treatments were as follows: 1 = untreated cell control, 2 = anti-CD46 mabs, 3 = DSTP-27, 4 = anti-CD46 mabs and DSTP-27, 5 = irrelevant SWC3 mab. (PPT 1190 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dräger, C., Beer, M. & Blome, S. Porcine complement regulatory protein CD46 and heparan sulfates are the major factors for classical swine fever virus attachment in vitro . Arch Virol 160, 739–746 (2015). https://doi.org/10.1007/s00705-014-2313-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2313-y

Keywords

Navigation