Skip to main content
Log in

Sequencing and phylogenetic analysis identifies candidate members of a new picornavirus genus in terrestrial tortoise species

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Near-complete genome sequences of seven picornavirus (PV) strains isolated from different terrestrial tortoise species were determined and characterized. The genome organization of the strains proved to be similar and displayed a typical PV layout, and the polyprotein-encoding regions showed low similarity to those of other PVs. The predicted regions of the tortoise PV genomes were related to the corresponding genome parts of viruses belonging to distinct genera, implying modular evolution of these novel viruses. Our results suggest that these tortoise PVs belong to a prototype species in a separate proposed genus in the family Picornaviridae, tentatively called Topivirus (Tortoise picornavirus).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Abascal F, Zardoya R, Telford MJ (2010) TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res 38:W7–W13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  3. Bányai K, Borzák R, Ihász K, Fehér E, Dán Á, Jakab F, Papp T, Hetzel U, Marschang RE, Farkas SL (2014) Whole-genome sequencing of a green bush viper reovirus reveals a shared evolutionary history between reptilian and unusual mammalian orthoreoviruses. Arch Virol 159:153–158

    Article  PubMed  Google Scholar 

  4. Blom N, Hansen J, Blaas D, Brunak S (1996) Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5:2203–2216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Chevreux B, Wetter T, Suhai S (1999) Genome sequence assembly using trace signals and additional sequence information. Computer science and biology: proceedings of the German conference on bioinformatics. Hannover, Germany, pp 45–56

    Google Scholar 

  6. Chow M, Newman JF, Filman D, Hogle JM, Rowlands DJ, Brown F (1987) Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327:482–486

    Article  CAS  PubMed  Google Scholar 

  7. Gorbalenya AE, Donchenko AP, Blinov VM, Koonin EV (1989) Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett 243:103–114

    Article  CAS  PubMed  Google Scholar 

  8. Gorbalenya AE, Koonin EV, Wolf YI (1990) A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett 262:145–148

    Article  CAS  PubMed  Google Scholar 

  9. Gorbalenya AE, Koonin EV, Lai MM (1991) Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett 288:201–205

    Article  CAS  PubMed  Google Scholar 

  10. Hammerle T, Molla A, Wimmer E (1992) Mutational analysis of the proposed FG loop of poliovirus proteinase 3C identifies amino acids that are necessary for 3CD cleavage and might be determinants of a function distinct from proteolytic activity. J Virol 66:6028–6034

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Heuser W, Kaleta E, Giesow K, Keil GM, Knowles NJ (2010) Genome sequence of virus “X”, a picornavirus isolated from a spur-thighed tortoise (Testudo graeca). In: Proceedings of EUROPIC XVI meeting of the European Study Group on the molecular biology of picornaviruses, St. Andrews, p 147

  12. Jenkins GM, Holmes EC (2003) The extent of codon usage bias in human RNA viruses and its evolutionary origin. Virus Res 92:1–7

    Article  CAS  PubMed  Google Scholar 

  13. Knowles NJ, Hovi T, Hyypiä T, King AMQ, Lindberg AM, Pallansch MA, Palmenberg AC, Simmonds P, Skern T, Stanway G, Yamashita T, Zell R (2012) Family Picornaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus taxonomy: classification and nomenclature of viruses. Ninth report of the International Committee on Taxonomy of Viruses. Elselvier, San Diego, pp 855–880

    Google Scholar 

  14. Lau SK, Woo PC, Yip CC, Choi GK, Wu Y, Bai R, Fan RY, Lai KK, Chan KH, Yuen KY (2012) Identification of a novel feline picornavirus from the domestic cat. J Virol 86:395–405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Lukashev AN (2010) Recombination among picornaviruses. Rev Med Virol 20:327–337

    Article  CAS  PubMed  Google Scholar 

  16. Marschang RE, Ruemenapf TH (2002) Virus “X”: characterizing a new viral pathogen in tortoises. In: Proceedings of the Association of Reptilian and Amphibian Veterinarians, Reno, pp 101–102

  17. Marschang RE (2011) Viruses infecting reptiles. Viruses 3:2087–2126

    Article  PubMed Central  PubMed  Google Scholar 

  18. Nicholas KB, Nicholas HB, Deerfield DW II (1997) GeneDoc: analysis and visualization of genetic variation. Embnet News 4:14

    Google Scholar 

  19. Palya V, Glávits R, Dobos-Kovács M, Ivanics É, Nagy É, Bányai K, Reuter G, Szűcs G, Dán Á, Benkő M (2003) Reovirus identified as cause of disease in young geese. Avian Pathol 32:129–138

    Article  PubMed  Google Scholar 

  20. Pintó RM, Aragonès L, Costafreda MI, Ribes E, Bosch A (2007) Codon usage and replicative strategies of hepatitis A virus. Virus Res 127:158–163

    Article  PubMed  Google Scholar 

  21. Racaniello V (2007) Picornaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields of virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 795–838

    Google Scholar 

  22. Rosseel T, Scheuch M, Höper D, De Regge N, Caij AB, Vandenbussche F, Van Borm S (2012) DNase SISPA-next generation sequencing confirms Schmallenberg virus in Belgian field samples and identifies genetic variation in Europe. PLoS ONE 7:e41967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Sauvage V, Ar Gouilh M, Cheval J, Muth E, Pariente K, Burguiere A, Caro V, Manuguerra JC, Eloit M (2012) A member of a new Picornaviridae genus is shed in pig feces. J Virol 86:10036–10046

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Woo PC, Lau SK, Choi GK, Huang Y, Teng JL, Tsoi HW, Tse H, Yeung ML, Chan KH, Jin DY, Yuen KY (2012) Natural occurrence and characterization of two internal ribosome entry site elements in a novel virus, canine picodicistrovirus, in the picornavirus-like superfamily. J Virol 86:2797–2808

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Our work was supported by the Momentum Program of the Hungarian Academy of Sciences and the OTKA K108727 grant of the National Scientific Research Fund of Hungary. Additional support was given to Ferenc Jakab from the National Excellence Program (co-funded by the European Union and the State of Hungary through the European Social Fund in the framework of TÁMOP 4.2.4 A/2-11-1-2012-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szilvia L. Farkas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farkas, S.L., Ihász, K., Fehér, E. et al. Sequencing and phylogenetic analysis identifies candidate members of a new picornavirus genus in terrestrial tortoise species. Arch Virol 160, 811–816 (2015). https://doi.org/10.1007/s00705-014-2292-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2292-z

Keywords

Navigation