Skip to main content
Log in

Analysis of small RNAs derived from Chinese wheat mosaic virus

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The virus-derived small interfering RNAs (vsiRNAs) of Chinese wheat mosaic virus (CWMV), a member of the genus Furovirus, were characterised from wheat plants by deep sequencing. CWMV vsiRNAs of 21–22 nt in length predominated, suggesting that there might be a conserved mechanism of DCL2 and DCL4 involvement in the biogenesis of vsiRNAs, as well as a common RNA silencing pathway in CWMV-infected wheat plants. The 5′-terminal base of vsiRNAs was biased towards A/U, suggesting that CWMV vsiRNAs might be loaded into diverse AGO-containing RISCs to disturb the gene expression of host plants. Possible targets for some of the vsiRNAs were predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Baulcombe D (2004) RNA silencing in plants. Nature 431:356–363

    Article  PubMed  CAS  Google Scholar 

  2. Csorba T, Pantaleo V, Burgyan J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75:35–71

    Article  PubMed  CAS  Google Scholar 

  3. Zamore PD (2002) Ancient pathways programmed by small RNAs. Science 296:1265–1269

    Article  PubMed  CAS  Google Scholar 

  4. Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  PubMed  CAS  Google Scholar 

  5. Nykanen A, Haley B, Zamore PD (2001) ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309–321

    Article  PubMed  CAS  Google Scholar 

  6. Ahlquist P (2002) RNA-dependent RNA polymerases, viruses, and RNA silencing. Science 296:1270–1273

    Article  PubMed  CAS  Google Scholar 

  7. Ding SW, Voinnet O (2007) Antiviral immunity directed by small RNAs. Cell 130:413–426

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, Waterhouse PM (2006) The evolution and diversification of Dicers in plants. FEBS Lett 580:2442–2450

    Article  PubMed  CAS  Google Scholar 

  9. Bouche N, Lauressergues D, Gasciolli V, Vaucheret H (2006) An antagonistic function for Arabidopsis DCL2 in development and a new function for DCL4 in generating viral siRNAs. EMBO J 25:3347–3356

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Moissiard G, Voinnet O (2006) RNA silencing of host transcripts by cauliflower mosaic virus requires coordinated action of the four Arabidopsis Dicer-like proteins. Proc Natl Acad Sci USA 103:19593–19598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104

    Article  PubMed  PubMed Central  Google Scholar 

  12. Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchical action and inhibition of plant Dicer-like proteins in antiviral defense. Science 313:68–71

    Article  PubMed  CAS  Google Scholar 

  13. Fusaro AF, Matthew L, Smith NA, Curtin SJ, Dedic-Hagan J, Ellacott GA, Watson JM, Wang MB, Brosnan C, Carroll BJ, Waterhouse PM (2006) RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep 7:1168–1175

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:50–952

    Article  Google Scholar 

  15. Pallett DW, Ho T, Cooper I, Wang H (2010) Detection of cereal yellow dwarf virus using small interfering RNAs and enhanced infection rate with cocksfoot streak virus in wild cocksfoot grass (Dactylis glomerata). J Virol Methods 168:223–227

    Article  PubMed  CAS  Google Scholar 

  16. Donaire L, Wang Y, Gonzalez-Ibeas D, Mayer KF, Aranda MA, Llave C (2009) Deep-sequencing of plant viral small RNAs reveals effective and widespread targeting of viral genomes. Virology 392:203–214

    Article  PubMed  CAS  Google Scholar 

  17. Ruiz-Ferrer V, Voinnet O (2009) Roles of plant small RNAs in biotic stress responses. Annu Rev Plant Biol 60:485–510

    Article  PubMed  CAS  Google Scholar 

  18. Tang G, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Diao A, Chen J, Ye R, Zheng T, Yu S, Antoniw JF, Adams MJ (1999) Complete sequence and genome properties of Chinese wheat mosaic virus, a new furovirus from China. J Gen Virol 80(5):1141–1145

    PubMed  CAS  Google Scholar 

  20. Ye R, Zheng T, Chen J, Diao A, Adams MJ, Yu S, Antoniw JF (1999) Characterization and partial sequence of a new furovirus of wheat in China. Plant Pathol 48:379–387

    Article  CAS  Google Scholar 

  21. Chen JP (1993) Occurrence of fungally transmitted wheat mosaic viruses in China. Ann Appl Biol 123:55–61

    Article  Google Scholar 

  22. Sun BJ, Sun LY, Tugume AK, Adams MJ, Yang J, Xie LH, Chen JP (2013) Selection pressure and founder effects constrain genetic variation in differentiated populations of soilborne bymovirus Wheat yellow mosaic virus (Potyviridae) in China. Phytopathology 103:949–959

    Article  PubMed  CAS  Google Scholar 

  23. Yang JP, Chen J, Chen JP, Jiang HM, Zhao Q, Adams MJ (2001) Sequence of a second isolate of Chinese wheat mosaic furovirus. J Phytopathol 149(3–4):135–140

    Article  CAS  Google Scholar 

  24. Moissiard G, Parizotto EA, Himber C, Voinnet O (2007) Transitivity in Arabidopsis can be primed, requires the redundant action of the antiviral Dicer-like 4 and Dicer-like 2, and is compromised by viral-encoded suppressor proteins. RNA 13:1268–1278

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Brosnan CA, Mitter N, Christie M, Smith NA, Waterhouse PM, Carroll BJ (2007) Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc Natl Acad Sci USA 104:14741–14746

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Diaz-Pendon JA, Li F, Li WX, Ding SW (2007) Suppression of antiviral silencing by cucumber mosaic virus 2b protein in Arabidopsis is associated with drastically reduced accumulation of three classes of viral small interfering RNAs. Plant Cell 19:2053–2063

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Ho T, Wang H, Pallett D, Dalmay T (2007) Evidence for targeting common siRNA hotspots and GC preference by plant Dicer-like proteins. FEBS Lett 581:3267–3272

    Article  PubMed  CAS  Google Scholar 

  28. Qi X, Bao FS, Xie Z (2009) Small RNA deep sequencing reveals role for Arabidopsis thaliana RNA-dependent RNA polymerases in viral siRNA biogenesis. PloS One 4:e4971

    Article  PubMed  PubMed Central  Google Scholar 

  29. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  30. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ, Griffiths-Jones S, Jacobsen SE, Mallory AC, Martienssen RA, Poethig RS, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu JK (2008) Criteria for annotation of plant MicroRNAs. Plant Cell 20:3186–3190

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65

    Article  PubMed  PubMed Central  Google Scholar 

  32. Harvey JJ, Lewsey MG, Patel K, Westwood J, Heimstadt S, Carr JP, Baulcombe DC (2011) An antiviral defense role of AGO2 in plants. PloS One 6:e14639

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133:116–127

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Qu F, Ye X, Morris TJ (2008) Arabidopsis DRB4, AGO1, AGO7, and RDR6 participate in a DCL4-initiated antiviral RNA silencing pathway negatively regulated by DCL1. Proc Natl Acad Sci USA 105:14732–14737

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49:493–500

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Special Fund for Agro-Scientific Research in the Public Interest of China (201303021), China Agriculture Research System (CARS-3-1) from the Ministry of Agriculture of China, Project of New Varieties of Genetically Modified Wheat of China (2011ZX08002-001), and the Zhejiang Provincial Foundation for Natural Science (Y3090657). We thank Professor M. J. Adams, Rothamsted Research, Harpenden, UK, for help in correcting the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng-Mu Zhang or Jian-Ping Chen.

Additional information

J. Yang and S.-L. Zheng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

705_2014_2155_MOESM1_ESM.jpg

Figure S1, Secondary structure prediction of the flanking sequences for the hotspots within the CWMV genomic RNA 1 (A). The number indicates the abundance of each corresponding position occurring in the vsiRNAs (JPEG 7194 kb)

705_2014_2155_MOESM2_ESM.jpg

Figure S1, Secondary structure prediction of the flanking sequences for the hotspots within the CWMV genomic RNA 2 (B). The number indicates the abundance of each corresponding position occurring in the vsiRNAs (JPEG 4195 kb)

Table S1, CWMV vsiRNA in a CWMV-infected plant (XLSX 1063 kb)

Table S2, The putative target genes of CWMV vsiRNA (XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zheng, SL., Zhang, HM. et al. Analysis of small RNAs derived from Chinese wheat mosaic virus. Arch Virol 159, 3077–3082 (2014). https://doi.org/10.1007/s00705-014-2155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2155-7

Keywords

Navigation