Skip to main content
Log in

Complete genome characterization of mosavirus (family Picornaviridae) identified in droppings of a European roller (Coracias garrulus) in Hungary

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Mosavirus (mosavirus A1, M-7/2010/USA, JF973687), a novel picornavirus, was found in a canyon mouse (Peromyscus crinitus) in the USA in 2010. It represents a novel species (Mosavirus A) in a novel genus (Mosavirus) in the family Picornaviridae. In this study, the first complete genome sequence of another mosavirus, SZAL6-MoV/2011/HUN (KF958461), was determined from one out of 18 fecal samples from an Afro-Palearctic migratory bird, the European roller (Coracias garrulus). The complete genome of SZAL6-MoV/2011/HUN is 8385 nt long (from poly(C) tract to poly(A) tail), contains a 646-nt-long 5′UTR that forms a type II IRES, and encodes a potential 2550-aa-long polyprotein precursor including an aphthovirus-like Lpro-proteinase, a small aphthovirus-like 2ANPG↓P, and two 3BVPg proteins. SZAL6-MoV/2011/HUN has 67 %, 74 %, and 76 % aa sequence identity in the P1, P2, and P3 region, respectively, to M-7/2010/USA and represents a second mosavirus type, mosavirus A2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Adams MJ, King AMQ, Carstens EB (2013) Ratification vote on taxonomic proposals to the International Committee on Taxonomy of Viruses. Arch Virol 158:2023–2030

    Article  PubMed  CAS  Google Scholar 

  2. Bassili G, Tzima E, Song Y, Saleh L, Ochs K, Niepmann M (2004) Sequence and secondary structure requirements in a highly conserved element for foot-and-mouth disease virus internal ribosome entry site activity and eIF4G binding. J Gen Virol 85:2555–2565

    Article  PubMed  CAS  Google Scholar 

  3. BirdLife International (2004) Birds in Europe: population estimates, trends and conservation status. BirdLife International, Cambridge, UK

    Google Scholar 

  4. Blom N, Hansen J, Blaas D, Brunak S (1996) Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5:2203–2216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Boros Á, Nemes C, Pankovics P, Kapusinszky B, Delwart E, Reute G (2012) Identification and complete genome characterization of a novel picornavirus in turkey (Meleagris gallopavo). J Gen Virol 93:2171–2182

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Boros Á, Pankovics P, Knowles N, Reuter G (2012) Natural interspecies recombinant bovine/porcine enterovirus in sheep. J Gen Virol 93:1941–1951

    Article  PubMed  CAS  Google Scholar 

  7. Boros Á, Kiss T, Kiss O, Pankovics P, Kapusinszky B, Delwart E, Reuter G (2013) Genetic characterization of a novel picornavirus distantly related to the marine mammal-infecting aquamaviruses in a long-distance migrant bird species, European roller (Coracias garrulus). J Gen Virol 94:2029–2035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Boros Á, Nemes C, Pankovics P, Kapusinszky B, Delwart E, Reuter G (2013) Genetic characterization of a novel picornavirus in turkeys (Meleagris gallopavo) distinct from turkey galliviruses and megriviruses and distantly related to the members of the genus Avihepatovirus. J Gen Virol 94:1496–1509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Costa Giomi MP, Bergmann IE, Scodeller EA, Augé de Mello P, Gomez I, La Torre JL (1984) Heterogeneity of the polyribocytidylic acid tract in aphthovirus: biochemical and biological studies of viruses carrying polyribocytidylic acids of different lengths. J Virol 51:799–805

    PubMed  CAS  PubMed Central  Google Scholar 

  10. Gan W, Rhoads RE (1996) Internal initiation of translation directed by the 5’-untranslated region of the mRNA for eIF4G, a factor involved in the picornavirus-induced switch from cap-dependent to internal initiation. J Biol Chem 271:623–626

    Article  PubMed  CAS  Google Scholar 

  11. Gorbalenya AE, Koonin EV, Lai MM (1991) Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpho- and coronaviruses. FEBS Lett 288:201–205

    Article  PubMed  CAS  Google Scholar 

  12. Hollister JR, Vagnozzi A, Knowles NJ, Rieder E (2008) Molecular and phylogenetic analysis of bovine rhinovirus type 2 shows it is closely related to foot-and-mouth disease virus. Virology 373:411–425

    Article  PubMed  CAS  Google Scholar 

  13. Kapoor A, Victoria J, Simmonds P, Slikas E, Chieochansin T, Naeem A, Shaukat S, Sharif S, Alam MM, Angez M, Wang C, Shafer RW, Zaidi S, Delwart E (2008) A highly prevalent and genetically diversified Picornaviridae genus in South Asian children. Proc Natl Acad Sci USA 105:20482–20487

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Knowles NJ, Hovi T, Hyypiä T, King AMQ, Lindberg AM, Pallansch MA, Palmenberg AC, Simmonds P, Skern T, Stanway G, Yamashita T, Zell R (2012) Picornaviridae. In: King AMQ, Adams MJ, Carstens EB, Lefkowitz EJ (eds) Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, San Diego, pp 855–880

    Google Scholar 

  15. Kozak M (1987) An analysis of 5’-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15:8125–8148

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Nicholas KB, Nicholas HB (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. National Resource for Biomedical Supercomputing. http://www.psc.edu/biomed/genedoc. Accessed 02 Sept 2013

  17. Phan TG, Kapusinszky B, Wang C, Rose RK, Lipton HL, Delwart EL (2011) The fecal viral flora of wild rodents. PLoS Path 7:1002218

    Article  Google Scholar 

  18. Racaniello V (2007) Chapter 24: Picornaviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, Philadelphia, pp 795–838

    Google Scholar 

  19. Reuter G, Boros Á, Delwart E, Pankovics P (2013) Novel seadornavirus (family Reoviridae) related to Banna virus in Europe. Arch Virol 158:2163–2167

    Article  PubMed  CAS  Google Scholar 

  20. Saleh L, Rust RC, Füllkrug R, Beck E, Bassili G, Ochs K, Niepmann M (2001) Functional interaction of translation initiation factor eIF4G with the foot-and-mouth disease virus internal ribosome entry site. J Gen Virol 82:757–763

    PubMed  CAS  Google Scholar 

  21. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Victoria JG, Kapoor A, Li L, Blinkova O, Slikas B, Wang C, Naeem A, Zaidi S, Delwart E (2009) Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis. J Virol 83:4642–4651

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Woo PC, Lau SK, Choi GK, Huang Y, Teng JL, Tsoi HW, Tse H, Yeung ML, Chan KH, Jin DY, Yuen KY (2012) Natural occurrence and characterization of two internal ribosome entry site elements in a novel virus, canine picodicistrovirus, in the picornavirus-like superfamily. J Virol 86:2797–2808

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Zucker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Hungarian Scientific Research Fund (OTKA K83013 and OTKA K111615) and by NHLBI R01-HL105770. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4.A/ 2-11/1-2012-0001 ‘National Excellence Program’. We thank Attila Hunor Török, Béla Tokody (supported by the Conservation Management and Animal Health Monitoring of Natura 2000 Bird Species HU-SRB IPA CBC PROJECT) and Edit Pollák for the collection of fecal samples.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Reuter.

Additional information

Nucleotide sequence data reported are available in the GenBank database under accession number KF958461.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reuter, G., Boros, Á., Kiss, T. et al. Complete genome characterization of mosavirus (family Picornaviridae) identified in droppings of a European roller (Coracias garrulus) in Hungary. Arch Virol 159, 2723–2729 (2014). https://doi.org/10.1007/s00705-014-2113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-014-2113-4

Keywords

Navigation