Skip to main content
Log in

Biological and genomic analysis of a PBSX-like defective phage induced from Bacillus pumilus AB94180

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Defective prophages, which are found in the genomes of many bacteria, are unable to complete a viral replication cycle and propagate in their hosts as healthy prophages. They package random DNA fragments derived from various sites of the host chromosome instead of their own genomes. In this study, we characterized a defective phage, PBP180, which was induced from Bacillus pumilus AB94180 by treatment with mitomycin C. Electron microscopy showed that the PBP180 particle has a head with a hexagonal outline of ~40 nm in diameter and a long tail. The DNA packaged in the PBP180 head consists of 8-kb DNA fragments from random portions of the host chromosome. The head and tail proteins of the PBP180 particle consist of four major proteins of approximately 49, 33, 16 and 14 kDa. The protein profile of PBP180 is different from that of PBSX, a well-known defective phage induced from Bacillus subtilis 168. A killing activity test against two susceptible strains each of B. subtilis and B. pumilus showed that the defective particles of PBP180 killed three strains other than its own host, B. pumilus AB94180, differing from the host-killing ranges of the defective phages PBSX, PBSZ (induced from B. subtilis W23), and PBSX4 (induced from B. pumilus AB94044). The genome of the PBP180 prophage, which is integrated in the B. pumilus AB94180 chromosome, is 28,205 bp in length, with 40 predicted open reading frames (ORFs). Further genomic comparison of prophages PBP180, PBSX, PBSZ and other PBSX-like prophage elements in B. pumilus strains revealed that their overall architectures are similar, but significant low homology exists in ORF29-ORF38, which presumably encode tail fiber proteins involved in recognition and killing of susceptible strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alonso JC, Luder G, Stiege AC, Chai S, Weise F, Trautner TA (1997) The complete nucleotide sequence and functional organization of Bacillus subtilis bacteriophage SPP1. Gene 204:201–212

    Article  PubMed  CAS  Google Scholar 

  2. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Anderson LM, Bott KF (1985) DNA packaging by the Bacillus subtilis defective bacteriophage PBSX. J Virol 54:773–780

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Bartual SG, Otero JM, Garcia-Doval C, Llamas-Saiz AL, Kahn R, Fox GC, van Raaij MJ (2010) Structure of the bacteriophage T4 long tail fiber receptor-binding tip. Proc Natl Acad Sci USA 107:20287–20292

    Article  PubMed Central  PubMed  Google Scholar 

  5. Baschong W, Aebi U, Baschong-Prescianotto C, Dubochet J, Landmann L, Kellenberger E, Wurtz M (1988) Head structure of bacteriophages T2 and T4. J Ultrastruct Mol Struct Res 99:189–202

    Article  PubMed  CAS  Google Scholar 

  6. Becker B, de la Fuente N, Gassel M, Gunther D, Tavares P, Lurz R, Trautner TA, Alonso JC (1997) Head morphogenesis genes of the Bacillus subtilis bacteriophage SPP1. J Mol Biol 268:822–839

    Article  PubMed  CAS  Google Scholar 

  7. Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, Frutiger S, Hochstrasser D (1993) The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14:1023–1031

    Article  PubMed  CAS  Google Scholar 

  8. Boyd EF, Brussow H (2002) Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 10:521–529

    Article  PubMed  CAS  Google Scholar 

  9. Bradley DE (1967) Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev 31:230

    PubMed Central  PubMed  CAS  Google Scholar 

  10. Buxton R (1976) Prophage mutation causing heat inducibility of defective Bacillus subtilis bacteriophage PBSX. J Virol 20:22–28

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Buxton RS (1980) Selection of Bacillus subtilis 168 mutants with deletions of the PBSX prophage. J Gen Virol 46:427–437

    Article  PubMed  CAS  Google Scholar 

  12. Canchaya C, Proux C, Fournous G, Bruttin A, Brussow H (2003) Prophage genomics. Microbiol Mol Biol Rev 67:238–276

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Casjens S, Weigele P (2005) DNA packaging by bacteriophage P22. In: Catalano C (ed) Viral Genome PackagingMachines: Genetics, Structure and Mechanism. Landes Bioscience, Georgetown, pp 80–88

  14. Cutting SM, Vander Horn PB (1990) Genetic analysis. In: Harwood CR, Cutting SM (eds) Molecular biological methods for Bacillus. John Wiley and Sons, Chichester, UK, pp 27–74

  15. Foster SJ (1993) Analysis of Bacillus subtilis 168 prophage-associated lytic enzymes; identification and characterization of CWLA-related prophage proteins. J Gen Microbiol 139:3177–3184

    Article  PubMed  CAS  Google Scholar 

  16. Garro AJ, Leffert H, Maemur J (1970) Genetic mapping of a defective bacteriophage on the chromosome of Bacillus subtilis 168. J Virol 6:340–343

    PubMed Central  PubMed  CAS  Google Scholar 

  17. Garro AJ, Marmur J (1970) Defective bacteriophages. J Cell Physiol 76:253–263

    Article  PubMed  CAS  Google Scholar 

  18. Gibson T, Gordon R (1974) Genus I. Bacillus Cohn 1872. In: Buchanan R, Gibbons N (eds) Bergey’ Manual of Determinative Bacteriology, 8th edn. Williams & Wilkins, Baltimore, pp 529–550

  19. Gioia J, Yerrapragada S, Qin X et al (2007) Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032. PLoS One 2:e928

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  20. Haas M, Yoshikawa H (1969) Defective bacteriophage PBSH in Bacillus subtilis. I. Induction, purification, and physical properties of the bacteriophage and its deoxyribonucleic acid. J Virol 3:233–247

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Hartford OM, Dowds BC (1992) Cloning and characterization of genes induced by hydrogen peroxide in Bacillus subtilis. J Gen Microbiol 138:2061–2068

    Article  PubMed  CAS  Google Scholar 

  22. Hemphill HE, Whiteley HR (1975) Bacteriophages of Bacillus subtilis. Bacteriol Rev 39:257–315

    PubMed Central  PubMed  CAS  Google Scholar 

  23. Hirokawa H, Kadlubar F (1969) Length of deoxyribonucleic acid of PBSX-like particles of Bacillus subtilis induced by 4-nitroquinoline-1-oxide. J Virol 3:205–209

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Huang W, Marmur J (1970) Characterization of inducible bacteriophages in Bacillus licheniformis. J Virol 5:237–246

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Huang WM, Marmur J (1970) The 5’-ends of the DNA of defective bacteriophages of Bacillus subtilis. J Mol Biol 47:591–593

    Article  PubMed  CAS  Google Scholar 

  26. Jiang R, Fan T (1990) Defective bacteriophage PPO in Bacillus pumilus. Acta Microbiologica Sinica 30:365–368

    Google Scholar 

  27. Krogh S, Jorgensen ST, Devine KM (1998) Lysis genes of the Bacillus subtilis defective prophage PBSX. J Bacteriol 180:2110–2117

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Kunst F, Ogasawara N, Moszer I et al (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–256

    Article  PubMed  CAS  Google Scholar 

  29. Lang AS, Beatty JT (2010) Gene Transfer Agents and Defective Bacteriophages as Sources of Extracellular Prokaryotic DNA. In: Kikuchi Y, Rykova E (eds) Extracellular Nucleic Acids, Nucleic Acids and Molecular Biology. Springer, Berlin, pp 15–24

    Chapter  Google Scholar 

  30. Leiman PG, Kanamaru S, Mesyanzhinov VV, Arisaka F, Rossmann MG (2003) Structure and morphogenesis of bacteriophage T4. Cell Mol Life Sci 60:2356–2370

    Article  PubMed  CAS  Google Scholar 

  31. Longchamp PF, Mauel C, Karamata D (1994) Lytic enzymes associated with defective prophages of Bacillus subtilis: sequencing and characterization of the region comprising the N-acetylmuramoyl-l-alanine amidase gene of prophage PBSX. Microbiology 140:1855–1867

    Article  PubMed  CAS  Google Scholar 

  32. Mauel C, Karamata D (1984) Characterization of proteins induced by mitomycin C treatment of Bacillus subtilis. J Virol 49:806–812

    PubMed Central  PubMed  CAS  Google Scholar 

  33. McDonnell GE, McConnell DJ (1994) Overproduction, isolation, and DNA-binding characteristics of Xre, the repressor protein from the Bacillus subtilis defective prophage PBSX. J Bacteriol 176:5831–5834

    PubMed Central  PubMed  CAS  Google Scholar 

  34. McDonnell GE, Wood H, Devine KM, McConnell DJ (1994) Genetic control of bacterial suicide: regulation of the induction of PBSX in Bacillus subtilis. J Bacteriol 176:5820–5830

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Ruger W (2003) Bacteriophage T4 genome. Microbiol Mol Biol Rev 67:86–156

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Moszer I, Jones LM, Moreira S, Fabry C, Danchin A (2002) SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res 30:62–65

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  37. Okamoto K, Mudd JA, Mangan J, Huang WM, Subbaiah TV, Marmur J (1968) Properties of the defective phage of Bacillus subtilis. J Mol Biol 34:413–428

    Article  PubMed  CAS  Google Scholar 

  38. Okamoto K, Mudd JA, Marmur J (1968) Conversion of Bacillus subtilis DNA to phage DNA following mitomycin C induction. J Mol Biol 34:429–437

    Article  PubMed  CAS  Google Scholar 

  39. Piggot PJ, Buxton RS (1982) Bacteriophage PBSX-induced deletion mutants of Bacillus subtilis 168 constitutive for alkaline phosphatase. J Gen Microbiol 128:663–669

    PubMed  CAS  Google Scholar 

  40. Rao VB, Feiss M (2008) The bacteriophage DNA packaging motor. Annu Rev Genet 42:647–681

    Article  PubMed  CAS  Google Scholar 

  41. Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  42. Seaman E, Tarmy E, Marmur J (1964) Inducible Phages of Bacillus Subtilis. Biochemistry 3:607–613

    Article  PubMed  CAS  Google Scholar 

  43. Shingaki R, Kasahara Y, Inoue T, Kokeguchi S, Fukui K (2003) Chromosome DNA fragmentation and excretion caused by defective prophage gene expression in the early-exponential-phase culture of Bacillus subtilis. Can J Microbiol 49:313–325

    Article  PubMed  CAS  Google Scholar 

  44. Steensma HY, Robertson LA, Van Elsas JD (1978) The occurrence and taxonomic value of PBSX-like defective phages in the genus Bacillus. Antonie van Leeuwenhoek 44:353–366

    Article  PubMed  CAS  Google Scholar 

  45. Steensma HY (1981) Adsorption of the defective phage PBSZ1 to Bacillus subtilis 168 Wt. J Gen Virol 52:93–101

    Article  PubMed  CAS  Google Scholar 

  46. Steensma HY (1981) Effect of defective phages on the cell membrane of Bacillus subtilis and partial characterization of the phage protein involved in killing. J Gen Virol 56:275–286

    Article  PubMed  CAS  Google Scholar 

  47. Thurm P, Garro AJ (1975) Isolation and characterization of prophage mutants of the defective Bacillus subtilis bacteriophage PBSX. J Virol 16:184–191

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Tsutsumi Y, Hirokawa H, Shishido K (1990) A new defective phage containing a randomly selected 8 kilobase-pairs fragment of host chromosomal DNA inducible in a strain of Bacillus natto. FEMS Microbiol Lett 60:41–46

    Article  PubMed  CAS  Google Scholar 

  49. Vinga I, São-José C, Tavares P, Santos MA (2006) Bacteriophage entry in the host cell. In: Wegrzyn G (ed) Modern Bacteriophage Biology and Biotechnology. Research Signpost, Kerala, pp 165–203

    Google Scholar 

  50. Wang J, Hofnung M, Charbit A (2000) The C-terminal portion of the tail fiber protein of bacteriophage lambda is responsible for binding to LamB, its receptor at the surface of Escherichia coli K-12. J Bacteriol 182:508–512

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Westers H, Dorenbos R, van Dijl JM et al (2003) Genome engineering reveals large dispensable regions in Bacillus subtilis. Mol Biol Evol 20:2076–2090

    Article  PubMed  CAS  Google Scholar 

  52. Wood HE, Dawson MT, Devine KM, McConnell DJ (1990) Characterization of PBSX, a defective prophage of Bacillus subtilis. J Bacteriol 172:2667–2674

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Wood HE, Devine KM, McConnell DJ (1990) Characterisation of a repressor gene (xre) and a temperature-sensitive allele from the Bacillus subtilis prophage, PBSX. Gene 96:83–88

    Article  PubMed  CAS  Google Scholar 

  54. Yu F, Mizushima S (1982) Roles of lipopolysaccharide and outer membrane protein OmpC of Escherichia coli K-12 in the receptor function for bacteriophage T4. J Bacteriol 151:718–722

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Zeigler DR (2011) The genome sequence of Bacillus subtilis subsp. spizizenii W23: insights into speciation within the B. subtilis complex and into the history of B. subtilis genetics. Microbiology 157:2033–2041

    Article  PubMed  CAS  Google Scholar 

  56. Zhang Z, Liu Y, Wang S, Yang D, Cheng Y, Hu J, Chen J, Mei Y, Shen P, Bamford DH, Chen X (2012) Temperate membrane-containing halophilic archaeal virus SNJ1 has a circular dsDNA genome identical to that of plasmid pHH205. Virology 434:233–241

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Basic Research Program of China (973 Program) (No. 2011CB808800) and the National Natural Science Foundation of China (No. 31270145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, T., Zhang, X., Zhang, Y. et al. Biological and genomic analysis of a PBSX-like defective phage induced from Bacillus pumilus AB94180. Arch Virol 159, 739–752 (2014). https://doi.org/10.1007/s00705-013-1898-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1898-x

Keywords

Navigation