Skip to main content

Advertisement

Log in

A renewed focus on the interplay between viruses and mitochondrial metabolism

  • Brief Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Mitochondria fulfil several key functions within cellular metabolic and antiviral signalling pathways, including their central role in ATP generation. Viruses, as intracellular parasites, require from their cellular host the building blocks for generation of their viral progeny and the energy that drives viral replication and assembly. While some viruses have adopted ways to manipulate the infected cell such that cellular metabolism supports optimal virus production, other viruses simply exhaust cellular resources. The association of viruses with mitochondria is influenced by several important factors such as speed of the viral replication cycle and viral dependence on cellular enzymes and metabolites. This review will highlight the complex interconnectivity of viral life cycles with the three main mitochondrial metabolic pathways, namely β-oxidation, the tricarboxylic (TCA) cycle, and oxidative phosphorylation. This interconnectivity has the potential to reveal interesting points for antiviral therapy with either prometabolites or antimetabolites and highlights the importance of the viral association with mitochondrial metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abrantes JL, Alves CM, Costa J, Almeida FCL, Sola-Penna M, Fontes CFL, Souza TML (2012) Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1). Bba Mol Basis Dis 1822:1198–1206

    Article  CAS  Google Scholar 

  2. Ackermann WW, Klernschmidt E (1951) Concerning the relation of the Krebs cycle to virus propagation. J Biol Chem 189:421–428

    CAS  PubMed  Google Scholar 

  3. Ackermann WW, Kurtz H (1952) The relation of herpes virus to host cell mitochondria. J Exp Med 96:151–157

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ando M, Korenaga M, Hino K, Ikeda M, Kato N, Nishina S, Hidaka I, Sakaida I (2008) Mitochondrial electron transport inhibition in full genomic hepatitis C virus replicon cells is restored by reducing viral replication. Liver Int 28:1158–1166

    Article  CAS  PubMed  Google Scholar 

  5. Ando T, Imamura H, Suzuki R, Aizaki H, Watanabe T, Wakita T, Suzuki T (2012) Visualization and measurement of ATP levels in living cells replicating hepatitis C virus genome RNA. PLoS Pathog 8:e1002561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bauerle J, Laguno M, Mauss S, Mallolas J, Murillas J, Miquel R, Schmutz G, Setzer B, Gatell JM, Walker UA (2005) Mitochondrial DNA depletion in liver tissue of patients infected with hepatitis C virus: contributing effect of HIV infection? HIV Med 6:135–139

    Article  CAS  PubMed  Google Scholar 

  7. Beatch MD, Everitt JC, Law LJ, Hobman TC (2005) Interactions between rubella virus capsid and host protein p32 are important for virus replication. J Virol 79:10807–10820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Brault C, Levy PL, Bartosch B (2013) Hepatitis C virus-induced mitochondrial dysfunctions. Viruses 5:954–980

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Castello A, Quintas A, Sanchez EG, Sabina P, Nogal M, Carrasco L, Revilla Y (2009) Regulation of host translational machinery by African swine fever virus. PLoS Pathog 5:e1000562

    Article  PubMed Central  PubMed  Google Scholar 

  10. Castro SM, Guerrero-Plata A, Suarez-Real G, Adegboyega PA, Colasurdo GN, Khan AM, Garofalo RP, Casola A (2006) Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation. Am J Respir Crit Care Med 174:1361–1369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Chambers JW, Maguire TG, Alwine JC (2010) Glutamine metabolism is essential for human cytomegalovirus infection. J Virol 84:1867–1873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Chang CW, Li HC, Hsu CF, Chang CY, Lo SY (2009) Increased ATP generation in the host cell is required for efficient vaccinia virus production. J Biomed Sci 16:80

    Article  PubMed Central  PubMed  Google Scholar 

  13. Claus C, Chey S, Heinrich S, Reins M, Richardt B, Pinkert S, Fechner H, Gaunitz F, Schafer I, Seibel P, Liebert UG (2011) Involvement of p32 and microtubules in alteration of mitochondrial functions by rubella virus. J Virol 85:3881–3892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Claus C, Schonefeld K, Hubner D, Chey S, Reibetanz U, Liebert UG (2013) Activity increase in respiratory chain complexes by rubella virus with marginal induction of oxidative stress. J Virol 87:8481–8492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Clippinger AJ, Bouchard MJ (2008) Hepatitis B virus HBx protein localizes to mitochondria in primary rat hepatocytes and modulates mitochondrial membrane potential. J Virol 82:6798–6811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Corcoran JA, Saffran HA, Duguay BA, Smiley JR (2009) Herpes simplex virus UL12.5 targets mitochondria through a mitochondrial localization sequence proximal to the N terminus. J Virol 83:2601–2610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Dasgupta A, Wilson DW (1999) ATP depletion blocks herpes simplex virus DNA packaging and capsid maturation. J Virol 73:2006–2015

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Derakhshan M, Willcocks MM, Salako MA, Kass GE, Carter MJ (2006) Human herpesvirus 1 protein US3 induces an inhibition of mitochondrial electron transport. J Gen Virol 87:2155–2159

    Article  CAS  PubMed  Google Scholar 

  19. Diamond DL, Syder AJ, Jacobs JM, Sorensen CM, Walters KA, Proll SC, McDermott JE, Gritsenko MA, Zhang Q, Zhao R, Metz TO, Camp DG 2nd, Waters KM, Smith RD, Rice CM, Katze MG (2010) Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics. PLoS Pathog 6:e1000719

    Article  PubMed Central  PubMed  Google Scholar 

  20. Ebermann L, Wika S, Klumpe I, Hammer E, Klingel K, Lassner D, Volker U, Erben U, Zeichhardt H, Schultheiss HP, Dorner A (2012) The mitochondrial respiratory chain has a critical role in the antiviral process in Coxsackievirus B3-induced myocarditis. Lab Invest 92:125–134

    Article  CAS  PubMed  Google Scholar 

  21. El-Bacha T, Midlej V, Pereira da Silva AP, Silva da Costa L, Benchimol M, Galina A, Da Poian AT (2007) Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus. Biochim Biophys Acta 1772:1158–1166

    Article  CAS  PubMed  Google Scholar 

  22. El-Bacha T, Da Poian AT (2013) Virus-induced changes in mitochondrial bioenergetics as potential targets for therapy. Int J Biochem Cell Biol 45(1):41–46

    CAS  PubMed  Google Scholar 

  23. Frederick RL, Shaw JM (2007) Moving mitochondria: establishing distribution of an essential organelle. Traffic 8:1668–1675

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Fujinaga H, Tsutsumi T, Yotsuyanagi H, Moriya K, Koike K (2011) Hepatocarcinogenesis in hepatitis C: HCV shrewdly exacerbates oxidative stress by modulating both production and scavenging of reactive oxygen species. Oncology 81(Suppl 1):11–17

    Article  CAS  PubMed  Google Scholar 

  25. Gong G, Waris G, Tanveer R, Siddiqui A (2001) Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc Natl Acad Sci USA 98:9599–9604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Gonzalez-Dosal R, Horan KA, Rahbek SH, Ichijo H, Chen ZJ, Mieyal JJ, Hartmann R, Paludan SR (2011) HSV infection induces production of ROS, which potentiate signaling from pattern recognition receptors: role for S-glutathionylation of TRAF3 and 6. PLoS Pathog 7:e1002250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gonzalez-Dosal R, Horan KA, Paludan SR (2012) Mitochondria-derived reactive oxygen species negatively regulates immune innate signaling pathways triggered by a DNA virus, but not by an RNA virus. Biochem Biophys Res Commun 418:806–810

    Article  CAS  PubMed  Google Scholar 

  28. Grady SL, Hwang J, Vastag L, Rabinowitz JD, Shenk T (2012) Herpes simplex virus 1 infection activates poly(ADP-ribose) polymerase and triggers the degradation of poly(ADP-ribose) glycohydrolase. J Virol 86:8259–8268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Guerra S, Lopez-Fernandez LA, Pascual-Montano A, Munoz M, Harshman K, Esteban M (2003) Cellular gene expression survey of vaccinia virus infection of human HeLa cells. J Virol 77:6493–6506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Hosakote YM, Jantzi PD, Esham DL, Spratt H, Kurosky A, Casola A, Garofalo RP (2011) Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 183:1550–1560

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Hui EK, Nayak DP (2001) Role of ATP in influenza virus budding. Virology 290:329–341

    Article  CAS  PubMed  Google Scholar 

  32. Jackson AC, Kammouni W, Fernyhough P (2011) Role of oxidative stress in rabies virus infection. Adv Virus Res 79:127–138

    Article  CAS  PubMed  Google Scholar 

  33. Jung SY, Kim YJ (2013) C-terminal region of HBx is crucial for mitochondrial DNA damage. Cancer Lett 331:76–83

    Article  CAS  PubMed  Google Scholar 

  34. Kaarbo M, Ager-Wick E, Osenbroch PO, Kilander A, Skinnes R, Muller F, Eide L (2011) Human cytomegalovirus infection increases mitochondrial biogenesis. Mitochondrion 11:935–945

    Article  CAS  PubMed  Google Scholar 

  35. Kim HJ, Kim SY, Kim J, Lee H, Choi M, Kim JK, Ahn JK (2008) Hepatitis B virus X protein induces apoptosis by enhancing translocation of Bax to mitochondria. IUBMB Life 60:473–480

    Article  CAS  PubMed  Google Scholar 

  36. Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kim S, Kim HY, Lee S, Kim SW, Sohn S, Kim K, Cho H (2007) Hepatitis B virus x protein induces perinuclear mitochondrial clustering in microtubule- and Dynein-dependent manners. J Virol 81:1714–1726

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Kim SJ, Syed GH, Siddiqui A (2013) Hepatitis C virus induces the mitochondrial translocation of parkin and subsequent mitophagy. PLoS Pathog 9:e1003285

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Korenaga M, Wang T, Li Y, Showalter LA, Chan T, Sun J, Weinman SA (2005) Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production. J Biol Chem 280:37481–37488

    Article  CAS  PubMed  Google Scholar 

  40. Kosmider B, Messier EM, Janssen WJ, Nahreini P, Wang J, Hartshorn KL, Mason RJ (2012) Nrf2 protects human alveolar epithelial cells against injury induced by influenza A virus. Respir Res 13:43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Miro O, Lopez S, Pedrol E, Rodriguez-Santiago B, Martinez E, Soler A, Milinkovic A, Casademont J, Nunes V, Gatell JM, Cardellach F (2003) Mitochondrial DNA depletion and respiratory chain enzyme deficiencies are present in peripheral blood mononuclear cells of HIV-infected patients with HAART-related lipodystrophy. Antivir Ther 8:333–338

    CAS  PubMed  Google Scholar 

  42. Moren C, Noguera-Julian A, Rovira N, Corrales E, Garrabou G, Hernandez S, Nicolas M, Tobias E, Cardellach F, Miro O, Fortuny C (2011) Mitochondrial impact of human immunodeficiency virus and antiretrovirals on infected pediatric patients with or without lipodystrophy. Pediatr Infect Dis J 30:992–995

    Article  PubMed  Google Scholar 

  43. Moren C, Garrabou G, Noguera-Julian A, Rovira N, Catalan M, Hernandez S, Tobias E, Cardellach F, Fortuny C, Miro O (2013) Study of oxidative, enzymatic mitochondrial respiratory chain function and apoptosis in perinatally HIV-infected pediatric patients. Drug Chem Toxicol 36(4):496–500. doi:10.3109/01480545.2013.776578

    CAS  PubMed  Google Scholar 

  44. Murata T, Goshima F, Daikoku T, Inagaki-Ohara K, Takakuwa H, Kato K, Nishiyama Y (2000) Mitochondrial distribution and function in herpes simplex virus-infected cells. J Gen Virol 81:401–406

    CAS  PubMed  Google Scholar 

  45. Murphy MP (2012) Modulating mitochondrial intracellular location as a redox signal. Sci Signal 5:pe39

    Article  PubMed  Google Scholar 

  46. Murray RK (2012) Harper’s illustrated biochemistry. McGraw-Hill Medical, New York

    Google Scholar 

  47. Nencioni L, Sgarbanti R, Amatore D, Checconi P, Celestino I, Limongi D, Anticoli S, Palamara AT, Garaci E (2011) Intracellular redox signaling as therapeutic target for novel antiviral strategy. Curr Pharm Des 17:3898–3904

    Article  CAS  PubMed  Google Scholar 

  48. Nomura-Takigawa Y, Nagano-Fujii M, Deng L, Kitazawa S, Ishido S, Sada K, Hotta H (2006) Non-structural protein 4A of Hepatitis C virus accumulates on mitochondria and renders the cells prone to undergoing mitochondria-mediated apoptosis. J Gen Virol 87:1935–1945

    Article  CAS  PubMed  Google Scholar 

  49. Oda T, Akaike T, Hamamoto T, Suzuki F, Hirano T, Maeda H (1989) Oxygen radicals in influenza-induced pathogenesis and treatment with pyran polymer-conjugated SOD. Science 244:974–976

    Article  CAS  PubMed  Google Scholar 

  50. Ohta A, Nishiyama Y (2011) Mitochondria and viruses. Mitochondrion 11:1–12

    Article  CAS  PubMed  Google Scholar 

  51. Panchal RG, Reid SP, Tran JP, Bergeron AA, Wells J, Kota KP, Aman J, Bavari S (2012) Identification of an antioxidant small-molecule with broad-spectrum antiviral activity. Antiviral Res 93:23–29

    Article  CAS  PubMed  Google Scholar 

  52. Quarato G, Scrima R, Agriesti F, Moradpour D, Capitanio N, Piccoli C (2013) Targeting mitochondria in the infection strategy of the hepatitis C virus. Int J Biochem Cell Biol 45:156–166

    Article  CAS  PubMed  Google Scholar 

  53. Rabinowitz JD, Purdy JG, Vastag L, Shenk T, Koyuncu E (2011) Metabolomics in drug target discovery. Cold Spring Harb Symp Quant Biol 76:235–246

    Article  CAS  PubMed  Google Scholar 

  54. Rahmani Z, Huh KW, Lasher R, Siddiqui A (2000) Hepatitis B virus X protein colocalizes to mitochondria with a human voltage-dependent anion channel, HVDAC3, and alters its transmembrane potential. J Virol 74:2840–2846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Rasmussen AL, Diamond DL, McDermott JE, Gao X, Metz TO, Matzke MM, Carter VS, Belisle SE, Korth MJ, Waters KM, Smith RD, Katze MG (2011) Systems virology identifies a mitochondrial fatty acid oxidation enzyme, dodecenoyl coenzyme A delta isomerase, required for hepatitis C virus replication and likely pathogenesis. J Virol 85:11646–11654

    Article  PubMed Central  PubMed  Google Scholar 

  56. Rawat S, Clippinger AJ, Bouchard MJ (2012) Modulation of apoptotic signaling by the hepatitis B virus X protein. Viruses 4:2945–2972

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Reeves MB, Davies AA, McSharry BP, Wilkinson GW, Sinclair JH (2007) Complex I binding by a virally encoded RNA regulates mitochondria-induced cell death. Science 316:1345–1348

    Article  CAS  PubMed  Google Scholar 

  58. Ripoli M, D’Aprile A, Quarato G, Sarasin-Filipowicz M, Gouttenoire J, Scrima R, Cela O, Boffoli D, Heim MH, Moradpour D, Capitanio N, Piccoli C (2010) Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1 alpha-mediated glycolytic adaptation. J Virol 84:647–660

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Rojo G, Chamorro M, Salas ML, Vinuela E, Cuezva JM, Salas J (1998) Migration of mitochondria to viral assembly sites in African swine fever virus-infected cells. J Virol 72:7583–7588

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Saffran HA, Pare JM, Corcoran JA, Weller SK, Smiley JR (2007) Herpes simplex virus eliminates host mitochondrial DNA. EMBO Rep 8:188–193

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493

    Article  CAS  PubMed  Google Scholar 

  62. Seth RB, Sun L, Ea CK, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122:669–682

    Article  CAS  PubMed  Google Scholar 

  63. Shokolenko I, Venediktova N, Bochkareva A, Wilson GL, Alexeyev MF (2009) Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res 37:2539–2548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Silva da Costa L, Pereira da Silva AP, Da Poian AT, El-Bacha T (2012) Mitochondrial bioenergetic alterations in mouse neuroblastoma cells infected with Sindbis virus: implications to viral replication and neuronal death. PLoS One 7:e33871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Takahashi M, Watari E, Shinya E, Shimizu T, Takahashi H (2007) Suppression of virus replication via down-modulation of mitochondrial short chain enoyl-CoA hydratase in human glioblastoma cells. Antivir Res 75:152–158

    Article  CAS  PubMed  Google Scholar 

  66. Takahashi M, Wolf AM, Watari E, Norose Y, Ohta S, Takahashi H (2013) Increased mitochondrial functions in human glioblastoma cells persistently infected with measles virus. Antivir Res. doi:10.1016/j.antiviral.2013.06.016

    Google Scholar 

  67. Tardif KD, Waris G, Siddiqui A (2005) Hepatitis C virus, ER stress, and oxidative stress. Trends Microbiol 13:159–163

    Article  CAS  PubMed  Google Scholar 

  68. Tchankouo-Nguetcheu S, Bourguet E, Lenormand P, Rousselle JC, Namane A, Choumet V (2012) Infection by chikungunya virus modulates the expression of several proteins in Aedes aegypti salivary glands. Parasit Vectors 5:264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Tritel M, Resh MD (2001) The late stage of human immunodeficiency virus type 1 assembly is an energy-dependent process. J Virol 75:5473–5481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Vastag L, Koyuncu E, Grady SL, Shenk TE, Rabinowitz JD (2011) Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog 7:e1002124

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, MacCoss MJ, Pallanck LJ (2013) The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. Proc Natl Acad Sci USA 110:6400–6405

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Wang T, Campbell RV, Yi MK, Lemon SM, Weinman SA (2010) Role of Hepatitis C virus core protein in viral-induced mitochondrial dysfunction. J Viral Hepat 17:784–793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Waris G, Huh KW, Siddiqui A (2001) Mitochondrially associated hepatitis B virus X protein constitutively activates transcription factors STAT-3 and NF-kappa B via oxidative stress. Mol Cell Biol 21:7721–7730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Williamson CD, DeBiasi RL, Colberg-Poley AM (2012) Viral product trafficking to mitochondria, mechanisms and roles in pathogenesis. Infect Disord Drug Targets 12:18–37

    Article  CAS  PubMed  Google Scholar 

  75. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase—a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677

    Article  CAS  PubMed  Google Scholar 

  76. Yu-Wai-Man P, Griffiths PG, Chinnery PF (2011) Mitochondrial optic neuropathies—disease mechanisms and therapeutic strategies. Prog Retin Eye Res 30:81–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Zhao YY, Sun XF, Nie XL, Sun LW, Tang TS, Chen DH, Sun QM (2012) COX5B regulates MAVS-mediated antiviral signaling through interaction with ATG5 and repressing ROS production. PLoS Pathog 8(12):e1003086

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank Dr. Mario Hönemann for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Claus.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claus, C., Liebert, U.G. A renewed focus on the interplay between viruses and mitochondrial metabolism. Arch Virol 159, 1267–1277 (2014). https://doi.org/10.1007/s00705-013-1841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1841-1

Keywords

Navigation