Skip to main content

Advertisement

Log in

Immunization with an HPV-16 L1-based chimeric virus-like particle containing HPV-16 E6 and E7 epitopes elicits long-lasting prophylactic and therapeutic efficacy in an HPV-16 tumor mice model

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

HPV L1-based virus-like particles vaccines (VLPs) efficiently induce temporary prophylactic activity through the induction of neutralizing antibodies; however, VLPs that can provide prophylactic as well as therapeutic properties for longer periods of time are needed. For this purpose, we generated a novel HPV 16 L1-based chimeric virus-like particle (cVLP) produced in plants that contains a string of T-cell epitopes from HPV 16 E6 and E7 fused to its C-terminus. In the present study, we analyzed the persistence of specific IgG antibodies with neutralizing activity induced by immunization with these cVLPs, as well as their therapeutic potential in a tumor model of C57BL/6 mice. We observed that these cVLPs induced persistent IgG antibodies for over 12 months, with reactivity and neutralizing activity for VLPs composed of only the HPV-16 L1 protein. Efficient protection for long periods of time and inhibition of tumor growth induced by TC-1 tumor cells expressing HPV-16 E6/E7 oncoproteins, as well as significant tumor reduction (57 %), were observed in mice immunized with these cVLPs. Finally, we discuss the possibility that chimeric particles of the type described in this work may be the basis for developing HPV prophylactic and therapeutic vaccines with high efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bosch FX, Lorincz A, Muñoz N, Meijer CJ, Shah KV (2002) The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 55:244–265

    Article  CAS  PubMed  Google Scholar 

  2. Females United to Unilaterally Reduce Endo-Ectocervical Disease (FUTURE) II Study Group (2007) Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med 356:1915–1927

    Article  Google Scholar 

  3. Joura EA, Leodolter S, Hernandez-Avila M, Wheeler CM, Perez G, Koutsky LA, Garland SM, Harper DM, Tang GW, Ferris DG, Steben M, Jones RW, Bryan J, Taddeo FJ, Bautista OM, Esser MT, Sings HL, Nelson M, Boslego JW, Sattler C, Barr E, Paavonen J (2007) Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet 369:1693–1702

    Article  CAS  PubMed  Google Scholar 

  4. Joura EA, Kjaer SK, Wheeler CM, Sigurdsson K, Iversen OE, Hernandez-Avila M, Perez G, Brown DR, Koutsky LA, Tay EH, García P, Ault KA, Garland SM, Leodolter S, Olsson SE, Tang GW, Ferris DG, Paavonen J, Lehtinen M, Steben M, Bosch X, Dillner J, Kurman RJ, Majewski S, Muñoz N, Myers ER, Villa LL, Taddeo FJ, Roberts C, Tadesse A, Bryan J, Lupinacci LC, Giacoletti KE, Lu S, Vuocolo S, Hesley TM, Haupt RM, Barr E (2008) HPV antibody levels and clinical efficacy following administration of a prophylactic quadrivalent HPV vaccine. Vaccine 26:6844–6851

    Article  CAS  PubMed  Google Scholar 

  5. McKeage K, Romanowski B (2011) AS04-adjuvanted human papillomavirus (HPV) types 16 and 18 vaccine (Cervarix®): a review of its use in the prevention of premalignant cervical lesions and cervical cancer causally related to certain oncogenic HPV types. Drugs 71:465–488

    CAS  PubMed  Google Scholar 

  6. Kemp TJ, Hildesheim A, Safaeian M, Dauner JG, Pan Y, Porras C, Schiller JT, Lowy DR, Herrero R, Pinto LA (2011) HPV16/18 L1 VLP vaccine induces cross-neutralizing antibodies that may mediate cross-protection. Vaccine 29:2011–2014

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Moody CA, Laimins LA (2010) Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 10:550–560

    Article  CAS  PubMed  Google Scholar 

  8. Galloway DA, Mc Dugall JK (1996) The disruption of cell cycle checkpoints by papillomavirus oncoproteins contributes to anogenital neoplasia. Semin Cancer Biol 7:309–315

    Article  CAS  PubMed  Google Scholar 

  9. Feltkamp MC, Smits HL, Vierboom MP, Minnaar RP, de Jongh BM, Drijfhout JW, ter Schegget J, Melief CJ, Kast WM (1993) Vaccination with cytotoxic T lymphocyte epitope-containing peptide protects against a tumor induced by human papillomavirus type 16-transformed cells. Eur J Immunol 23:2242–2249

    Article  CAS  PubMed  Google Scholar 

  10. Kadish AS, Romney SL, Ledwidge R, Tindle R, Fernando GJ, Zee SY, Van Ranst MA, Burk RD (1994) Cell-mediated immune responses to E7 peptides of human papillomavirus (HPV) type 16 are dependent on the HPV type infecting the cervix whereas serological reactivity is not type-specific. J Gen Virol 75:2277–2284

    Article  PubMed  Google Scholar 

  11. Greenstone HL, Nieland JD, de Visser KE, De Bruijn ML, Kirnbauer R, Roden RB, Lowy DR, Kast WM, Schiller JT (1998) Chimeric papillomavirus virus-like particles elicit antitumor immunity against the E7 oncoprotein in an HPV16 tumor model. Proc Natl Acad Sci USA 95:1800–1805

    Article  CAS  PubMed  Google Scholar 

  12. Schäfer K, Müller M, Faath S, Henn A, Osen W, Zentgraf H, Benner A, Gissmann L, Jochmus I (1999) Immune response to human papillomavirus 16 L1E7 chimeric virus-like particles: induction of cytotoxic T cells and specific tumor protection. Int J Cancer 81:881–888

    Article  PubMed  Google Scholar 

  13. Bian T, Wang Y, Lu Z, Ye Z, Zhao L, Ren J, Zhang H, Ruan L, Tian H (2008) Human papillomavirus type 16 L1E7 chimeric capsomeres have prophylactic and therapeutic efficacy against papillomavirus in mice. Mol Cancer Ther 7:1329–1335

    Article  CAS  PubMed  Google Scholar 

  14. Sharma C, Dey B, Wahiduzzaman M, Singh N (2012) Human papillomavirus 16 L1–E7 chimeric virus like particles show prophylactic and therapeutic efficacy in murine model of cervical cancer. Vaccine 30:5417–5424

    Article  CAS  PubMed  Google Scholar 

  15. Peng S, Frazer IH, Fernando GJ, Zhou J (1998) Papillomavirus virus-like particles can deliver defined CTL epitopes to the MHC class I pathway. Virology 240:147–157

    Article  CAS  PubMed  Google Scholar 

  16. Liu WJ, Liu XS, Zhao KN, Leggatt GR, Frazer IH (2000) Papillomavirus virus-like particles for the delivery of multiple cytotoxic T cell epitopes. Virology 273:374–382

    Article  CAS  PubMed  Google Scholar 

  17. Gomez Lim MA (2007) Transgenic plants in therapeutically valuable protein production. Transgenic Plant J 1:256–266

    Google Scholar 

  18. Šmídková M, Holá M, Brouzdová J, Angelis KJ (2012) Plant production of vaccine against HPV. In: Broeck DV (ed) A new perspectives, human papillomavirus and related diseases—from bench to bedside—a clinical perspective. INTECH, Croatia, pp 147–217

    Google Scholar 

  19. Biemelt S, Sonnewald U, Galmbacher P, Willmitzer L, Muller M (2003) Production of human papillomavirus type 16 virus-like particles in transgenic plants. J Virol 77:9211–9212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kohl T, Hitzeroth I, Christensen N, Rybicki E (2007) Expression of HPV-11 L1 protein in transgenic Arabidopsis thaliana and Nicotiana tabacum. BMC Biotechnol 7:56

    Article  PubMed Central  PubMed  Google Scholar 

  21. Warzecha H, Mason HS, Lane C, Tryggvesson A, Rybicki EP, Williamson AL, Clements JD, Rose RC (2003) Oral immunogenicity of human papillomavirus-like particles expressed in potato. J Virol 77:8702–8711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Paz de la Rosa G, Monroy-García A, Mora-García ML, Hernández-Montes J, Weiss-Steider B, Gómez-Lim MA (2009) An HPV16 L1-based chimeric human papilloma virus-like particles containing astring of epitopes produced in plants is able to elicit humoral and cytotoxic T-cell activity in mice. Virol J 6:2

    Article  PubMed  Google Scholar 

  23. Ressing ME, Sette A, Brandt RM, Ruppert J, Wentworth PA, Hartman M, Oseroff C, Grey HM, Melief CJ (1995) Human CTL epitopes encoded by human papillomavirus type 16 E6 and E7 identified through in vivo and in vitro immunogenicity studies of HLA-A*0201-binding peptides. J Immunol 154:5934–5943

    CAS  PubMed  Google Scholar 

  24. Kadish AS, Timmins P, Wang Y, Ho GY, Burk RD, Ketz J, He W, Romney SL, Johnson A, Angeletti R, Abadi M (2002) Regression of cervical intraepithelial neoplasia and loss of human papillomavirus (HPV) infection is associated with cell-mediated immune responses to an HPV type 16 E7 peptide. Cancer Epidemiol Biomarkers Prev 11:483–488

    CAS  PubMed  Google Scholar 

  25. Khammanivong V, Liu XS, Liu WJ, Rodda SJ, Leggatt GR, Tndle RW, Frazer IH, Fernando GJ (2003) Paucity of functional CTL epitopes in the E7 oncoprotein of cervical cancer associated human papillomavirus type 16. Immunol Cell Biol 81:1–7

    Article  CAS  PubMed  Google Scholar 

  26. Monroy-García A, Hernández-Montes J, Mora-García ML (2007) Identification of epitopes from L1, E6, and E7 proteins of the HPV-16 and 18 types and its implication for diagnosis and treatment of cervical carcinoma. In: Manual Moderno, UNAM, PUIS (eds) Advances in cancer research at UNAM (Universidad Nacional Autónoma de México). UNAM, Mexico, pp 1–32

    Google Scholar 

  27. Monroy-García A, Gómez-Lim MA, Weiss-Steider B, la Rosa GP, Hernández-Montes J, Pérez-Saldaña K, Tapia-Guerrero YS, Toledo-Guzmán ME, Santiago-Osorio E, Sanchez-Peña HI, Mora-García Mde L (2011) A novel HPV 16 L1-based chimeric virus-like particle containing E6 and E7 seroreactive epitopes permits highly specific detection of antibodies in patients with CIN 1 and HPV-16 infection. Virol J 8:59

    Article  PubMed Central  PubMed  Google Scholar 

  28. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  29. Roden RB, Hubbert NL, Kirnbauer R, Breitburd F, Lowy DR, Schiller JT (1995) Papillomavirus L1 capsids agglutinate mouse erythrocytes through a proteinaceous receptor. J Virol 69:5147–5151

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Lin KY, Guarnieri FG, Staveley-O’Carroll KF, Levitsky HI, August JT, Pardoll DM, Wu TC (1996) Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 56:21–26

    CAS  PubMed  Google Scholar 

  31. Attia MA, Weiss DW (1966) Immunology of spontaneous mammary carcinomas in mice V. Acquired tumor resistance and enhancement in strain A mice infected with mammary tumor virus. Cancer Res 26:1787–1800

    CAS  PubMed  Google Scholar 

  32. Huerta S, Heinzerling JH, Anguiano-Hernandez YM, Huerta-Yepez S, Lin J, Chen D, Bonavida B, Livingston EH (2007) Modification of gene products involved in resistance to apoptosis in metastatic colon cancer cells: roles of Fas, Apaf-1, NFkappaB, IAPs, Smac/DIABLO, and AIF. J Surg Res 142:184–194

    Article  CAS  PubMed  Google Scholar 

  33. Huerta S, Srivatsan ES, Venkatesan N, Peters J, Moatamed F, Renner S, Livingston EH (2001) Alternative mRNA splicing in colon cancer causes loss of expression of neural cell adhesion molecule. Surgery 130:834–843

    Article  CAS  PubMed  Google Scholar 

  34. Kirnbauer R, Booy F, Cheng N, Lowy DR, Schiller JT (1992) Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc Natl Acad Sci USA 89:12180–12184

    Article  CAS  PubMed  Google Scholar 

  35. Ochi H, Kondo K, Matsumoto K, Oki A, Yasugi T, Furuta R, Hirai Y, Yoshikawa H, Kanda T (2008) Neutralizing antibodies against human papillomavirus types 16, 18, 31, 52, and 58 in serum samples from women in Japan with low-grade cervical intraepithelial neoplasia. Clin Vaccine Immunol 15:1536–1540

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Nakagawa M, Viscidi R, Deshmukh I, Costa MD, Palefsky JM, Farhat S, Moscicki AB (2002) Time course of humoral and cell-mediated immune responses to human papillomavirus type 16 in infected women. Clin Diagn Lab Immunol 9:877–882

    PubMed Central  PubMed  Google Scholar 

  37. Malik ZA, Hailpern SM, Burk RD (2009) Persistent antibodies to HPV virus-like particles following natural infection are protective against subsequent cervicovaginal infection with related and unrelated HPV. Viral Immunol 22:445–449

    Article  CAS  PubMed  Google Scholar 

  38. Wick DA, Webb JR (2011) A novel, broad spectrum therapeutic HPV vaccine targeting the E7 proteins of HPV16, 18, 31, 45 and 52 that elicits potent E7-specific CD8T cell immunity and regression of large, established, E7-expressing TC-1 tumors. Vaccine 29:7857–7866

    Article  CAS  PubMed  Google Scholar 

  39. Barrios K, Celis E (2012) TriVax-HPV: an improved peptide-based therapeutic vaccination strategy against human papillomavirus-induced cancers. Cancer Immunol Immunother 61:1307–1317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. FUTURE I/II Study Group, Dillner J, Kjaer SK, Wheeler CM, Sigurdsson K, Iversen OE, Hernandez-Avila M, Perez G, Brown DR, Koutsky LA, Tay EH, García P, Ault KA, Garland SM, Leodolter S, Olsson SE, Tang GW, Ferris DG, Paavonen J, Lehtinen M, Steben M, Bosch FX, Joura EA, Majewski S, Muñoz N, Myers ER, Villa LL, Taddeo FJ, Roberts C, Tadesse A, Bryan JT, Maansson R, Lu S, Vuocolo S, Hesley TM, Barr E, Haupt R (2010) Four year efficacy of prophylactic human papillomavirus quadrivalent vaccine against low grade cervical, vulvar, and vaginal intraepithelial neoplasia and anogenital warts: randomised controlled trial. BMJ 341:c3493

    Article  PubMed  Google Scholar 

  41. Stanley M (2010) HPV-immune response to infection and vaccination. Infect Agents Cancer 5:19

    Article  PubMed Central  PubMed  Google Scholar 

  42. Schiller JT, Castellsagué X, Garland SM (2012) A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 30S:F123–F138

    Article  Google Scholar 

  43. Jemal A, Simard EP, Dorell C, Noone A-M, Markowitz LE, Kohler B, Eheman C, Saraiya M, Bandi P, Saslow D, Cronin KA, Watson M, Mark Schiffman S, Henley J, Schymura MJ, Anderson RN, Yankey D, Edwards BK (2013) Annual report to the nation on the status of cancer, 1975–2009, featuring the burden and trends in human papillomavirus (HPV)-associated cancers and HPV vaccination coverage levels. J Natl Cancer Inst 105:175–201

    Article  PubMed  Google Scholar 

  44. Kuck D, Leder C, Kern A, Müller M, Piuko K, Gissmann L, Kleinschmidt JA (2006) Efficiency of HPV 16 L1/E7 DNA immunization: influence of cellular localization and capsid assembly. Vaccine 24:2952–2965

    Article  CAS  PubMed  Google Scholar 

  45. Zhang T, Xu Y, Qiao L, Wang Y, Wu X, Fan D, Peng Q, Xu X (2010) Trivalent human papillomavirus (HPV) VLP vaccine covering HPV type 58 can elicit high level of humoral immunity but also induce immune interference among component types. Vaccine 28:3479–3487

    Article  CAS  PubMed  Google Scholar 

  46. Combita AL, Bravo MM, Touze A, Orozco O, Coursaget P (2002) Serologic response to human oncogenic papillomavirus types 16, 18, 31, 33, 39, 58 and 59 virus-like particles in Colombian women with invasive cervical cancer. Int J Cancer 97:796–803

    Article  CAS  PubMed  Google Scholar 

  47. Combita AL, Touze A, Bousarghin L, Christensen ND, Coursaget P (2002) Identification of two cross-neutralizing linear epitopes within the L1 major capsid protein of human papillomaviruses. J Virol 76:6480–6486

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Jenkins D (2008) A review of cross-protection against oncogenic HPV by an HPV-16/18 AS04-adjuvanted cervical cancer vaccine: importance of virological and clinical endpoints and implications for mass vaccination in cervical cancer prevention. Gynecol Oncol 110:S18–S25

    Article  CAS  PubMed  Google Scholar 

  49. Paavonen J, Naud P, Salmerón J, Wheeler CM, Chow SN, Apter D, Kitchener H, Castellsague X, Teixeira JC, Skinner SR, Hedrick J, Jaisamrarn U, Limson G, Garland S, Szarewski A, Romanowski B, Aoki FY, Schwarz TF, Poppe WA, Bosch FX, Jenkins D, Hardt K, Zahaf T, Descamps D, Struyf F, Lehtinen M, Dubin G, HPV PATRICIA Study Group (2009) Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 374:301–314

    Article  CAS  PubMed  Google Scholar 

  50. Smith JF, Brownlow M, Brown M, Kowalski R, Esser MT, Ruiz W, Barr E, Brown DR, Bryan JT (2007) Antibodies from women immunized with Gardasil cross neutralize HPV 45 pseudovirions. Hum Vaccine 3:109–115

    Article  CAS  Google Scholar 

  51. Kaufmann AM, Nieland J, Schinz M, Nonn M, Gabelsberger J, Meissner H, Müller RT, Jochmus I, Gissmann L, Schneider A, Dürst M (2001) HPV16 L1E7 chimeric virus-like particles induce specific HLA-restricted T cells in humans after in vitro vaccination. Int J Cancer 92:285–293

    Article  CAS  PubMed  Google Scholar 

  52. Rudolf MP, Fausch SC, Da Silva DM, Kast WM (2001) Human dendritic cells are activated by chimeric human papillomavirus type-16 virus-like particles and induce epitope-specific human T cell responses in vitro. J Immunol 166:5917–5924

    CAS  PubMed  Google Scholar 

  53. Fausch SC, Da Silva DM, Kast WM (2003) Differential uptake and cross-presentation of human papillomavirus virus-like particles by dendritic cells and Langerhans cells. Cancer Res 63:3478–3482

    CAS  PubMed  Google Scholar 

  54. Bellone S, El-Sahwi K, Cocco E, Casagrande F, Cargnelutti M, Palmieri M, Bignotti E, Romani C, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD (2009) Human papillomavirus type 16 (HPV-16) virus-like particle L1-specific CD8+ cytotoxic T lymphocytes (CTLs) are equally effective as E7-specific CD8+ CTLs in killing autologous HPV-16-positive tumor cells in cervical cancer patients: implications for L1 dendritic cell-based therapeutic vaccines. J Virol 83:6779–6789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Da Silva DM, Fausch SC, Verbeek JS, Kast WM (2007) Uptake of human papillomavirus virus-like particles by dendritic cells is mediated by Fcgamma receptors and contributes to acquisition of T cell immunity. J Immunol 178:7587–7597

    PubMed  Google Scholar 

  56. Amigorena S, Bonnerot C (1999) Fc receptor signaling and trafficking: a connection for antigen processing. Immunol Rev 172:279–284

    Article  CAS  PubMed  Google Scholar 

  57. Rodriguez A, Regnault A, Kleijmeer M, Ricciardi-Castagnoli P, Amigorena S (1999) Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1:362–368

    Article  CAS  PubMed  Google Scholar 

  58. Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S (1999) Fc receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189:371–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. De Jong JM, Schuurhuis DH, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Ossendorp F, Toes RE, Verbeek JS (2006) Murine Fc receptors for IgG are redundant in facilitating presentation of immune complex derived antigen to CD8 T cells in vivo. Mol Immunol 43:2045–2050

    Article  PubMed  Google Scholar 

  60. Da Silva DM, Velders MP, Nieland JD, Schiller JT, Nickoloff BJ, Kast WM (2001) Physical interaction of human papillomavirus virus-like particles with immune cells. Int Immunol 13:633–641

    Article  PubMed  Google Scholar 

  61. Fausch SC, Da Silva DM, Kast WM (2005) Heterologous papillomavirus virus-like particles and human papillomavirus virus-like particle immune complexes activate human Langerhans cells. Vaccine 23:1720–1729

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thankfully acknowledge the excellent technical assistance of Ernesto Javier Rivera Rosales. We are indebted to CONACYT for support to AMG (grant 84071), MAGL (grant 83732) and MLMG (grant 82827); and Fondo de Investigación en Salud-IMSS for support to AMG. Protocolos 60 and 617 and 876 are gratefully acknowledged.

Conflict of interest

The authors declare that they do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María de Lourdes Mora García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monroy-García, A., Gómez-Lim, M.A., Weiss-Steider, B. et al. Immunization with an HPV-16 L1-based chimeric virus-like particle containing HPV-16 E6 and E7 epitopes elicits long-lasting prophylactic and therapeutic efficacy in an HPV-16 tumor mice model. Arch Virol 159, 291–305 (2014). https://doi.org/10.1007/s00705-013-1819-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-013-1819-z

Keywords

Navigation