Skip to main content
Log in

Partial molecular characterization of different proviral strains of bovine leukemia virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Bovine leukemia virus (BLV)-infected cattle were classified by their proviral load into low and high proviral load profiles (LPL and HPL, respectively). Blood from these animals was used to infect sheep to obtain multiple identical copies of integrated provirus. An env fragment of BLV was amplified from all infected sheep and sequenced. The sequences that were obtained were compared to already published BLV genome sequence, resulting in three clusters. Mutations could not be attributed to the passage of provirus from cattle to sheep and subsequent amplification and sequencing. The description of two different proviral load profiles, the association of the BoLA-DRB3.2*0902 allele with the LPL profile, the availability of complete BLV sequences, and the comparison of a variable region of the env gene from carefully characterized cattle are still not enough to explain the presence of animals in every herd that are resistant to BLV dissemination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Fauquet CM, Mayo A, Maniloff J, Desselberger U, Ball LA (2005) Virus taxonomy, VIIIth report of the ICTV. Elsevier Academic Press, London

    Google Scholar 

  2. Ott SL, Johnson R, Wells SJ (2003) Association between bovine-leukosis virus seroprevalence and herd-level productivity on US dairy farms. Prev Vet Med 61:249–262

    Article  PubMed  CAS  Google Scholar 

  3. Rhodes JK, Pelzer KD, Johnson YJ (2003) Economic implications of bovine leukemia virus infection in mid-Atlantic dairy herds. J Am Vet Med Assoc 223:346–352

    Article  PubMed  Google Scholar 

  4. Rodríguez SM, Florins A, Gillet N et al (2011) Preventive and therapeutic strategies for bovine leukemia virus: lessons for HTLV. Viruses 3:1210–1248

    Article  PubMed  Google Scholar 

  5. Kabeya H, Fukuda A, Ohashi K, Sugimoto C, Onuma M (2001) Tumor necrosis factor alpha and its receptors in experimentally bovine leukemia virus-infected sheep. Vet Immunol Immunopathol 81(1–2):129–139

    Article  PubMed  CAS  Google Scholar 

  6. Florins A, Gillet N, Asquith B et al (2007) Cell dynamics and immune response to BLV infection: a unifying model. Front Biosci 1(12):1520–1531

    Article  Google Scholar 

  7. Licursi M, Inoshima Y, Wu D et al (2002) Genetic heterogeneity among bovine leukemia virus genotypes and its relation to humoral responses in hosts. Virus Res 86:101–110

    Article  PubMed  CAS  Google Scholar 

  8. Fechner H, Blankenstein P, Looman AC et al (1997) Provirus variants of the bovine leukemia virus and their relation to the serological status of naturally infected cattle. Virology 237(2):261–269

    Article  PubMed  CAS  Google Scholar 

  9. Juliarena MA, Gutierrez SE, Ceriani C (2007) Determination of proviral load in bovine leukaemia virus-infected cattle with and without lymphocytosis. Am J Vet Res 68(11):1220–1225

    Article  PubMed  CAS  Google Scholar 

  10. Erskine R, Sordillo L (2009) Bovine leukosis virus update I: prevalence, economic losses, and management. Michigan Dairy Review, University of Michigan, MI

  11. Nuotio L, Rusanen H, Sihvonen L, Neuvonen E (2003) Eradication of enzootic bovine leukosis from Finland. Prev Vet Med 59(1–2):43–49

    Article  PubMed  CAS  Google Scholar 

  12. Acaite J, Tamosiunas V, Lukauskas K, Milius J, Pieskus J (2007) The eradication experience of enzootic bovine leukosis from Lithuania. Prev Vet Med 82(1–2):83–89

    Article  PubMed  CAS  Google Scholar 

  13. Juliarena MA, Poli M, Sala L, Ceriani C et al (2008) Association of BLV-infection profiles with alleles of BoLA DRB3.2 gene. Anim Genet 39(4):432–438

    Article  PubMed  CAS  Google Scholar 

  14. Willems L, Kerkhofs P, Burny A, Mammerickx M, Kettmann R (1995) Lack of LTR and ENV genetic variation during bovine leukemia virus-induced leukemogenesis. Virology 206(1):769–772

    Article  PubMed  CAS  Google Scholar 

  15. Moratorio G, Obal G, Dubra A et al (2010) Phylogenetic analysis of bovine leukemia viruses isolated in South America reveals diversification in seven distinct genotypes. Arch Virol 155(4):481–489

    Article  PubMed  CAS  Google Scholar 

  16. Zaho X, Buehring G (2007) Natural genetic variations in bovine leukemia virus envelope gene: possible effects of selection and escape. Virology 360:150–165

    Article  Google Scholar 

  17. Felmer R, Muñoz G, Zuñiga J, Recabal M (2005) Molecular analysis of a 444 bp fragment of the bovine leukaemia virus gp51 env gene reveals a high frequency of non-silent point mutations and suggests the presence of two subgroups of BLV in Chile. Vet Microbiol 108(1–2):39–47

    Article  PubMed  CAS  Google Scholar 

  18. Alkan F, Oğuzoğlu TC, Timurkan MO, Karapmar Z (2011) Characterisation of env and gag gene fragments of bovine leukemia viruses (BLVs) from cattle in Turkey. Arch Virol 156:1891–1896

    Article  PubMed  CAS  Google Scholar 

  19. Coulston J, Naif H, Brandon R et al (1990) Molecular cloning and sequencing of an Australian isolate of proviral bovine leukaemia virus DNA: comparison with other isolates. J Gen Virol 71(Pt 8):1737–1746

    Article  PubMed  CAS  Google Scholar 

  20. Mamoun RZ, Morisson M, Rebeyrotte N et al (1990) Sequence variability of bovine leukemia virus env gene and its relevance to the structure and antigenicity of the glycoproteins. J Virol 64(9):4180–4188

    PubMed  CAS  Google Scholar 

  21. Camargos MF, Stancek D, Rocha MA, Lessa LM et al (2002) Partial sequencing of env gene of bovine leukemia virus from Brazilian samples and phylogenetic analysis. J Vet Med B49:325–331

    Article  Google Scholar 

  22. Hemmatzadeh F (2007) Sequencing and phylogenetic analysis of gp51 gene of bovine leukemia virus in Iranian isolates. Vet Res Commun 31(6):783–789

    Article  PubMed  CAS  Google Scholar 

  23. Dube S, Abbott L, Dube DK et al (2009) The complete genomic sequence of an in vivo low replicating BLV strain. Virol J 6(1):120

    Article  PubMed  Google Scholar 

  24. American Veterinary Medical Association (2007) Guidelines for veterinarians and veterinary associations working with animal control and animal welfare organizations. Available from http://www.avma.org/issues/policy/comments/ofc_assc_guidelines_animal_control.asp

  25. Gutiérrez SE, Dolcini GL, Arroyo GH, Rodriguez Dubra C, Ferrer JF, Esteban EN (2001) Development and evaluation of a highly sensitive and specific blocking enzyme-linked immunosorbent assay and polymerase chain reaction assay for diagnosis of bovine leukemia virus infection in cattle. Am J Vet Res 62(10):1571–1577

    Article  PubMed  Google Scholar 

  26. Juliarena M, Gutierrez S, Ceriani C (2007) Chicken antibodies: a useful tool for antigen capture ELISA to detect bovine leukemia virus without cross-reaction with other mammalian antibodies. Vet Res Commun 31(1):43–51

    Article  PubMed  CAS  Google Scholar 

  27. Sambrook J, Maniatis T (1989) Molecular cloning: a laboratory manual, vol 1. Cold Spring Harbor Laboratory Press, Woodbury, New York

    Google Scholar 

  28. Dube S, Dolcini G, Abbot L et al (2000) The complete genomic sequence of a BLV strain from a Holstein cow from Argentina. Virology 277(2):379–386

    Article  PubMed  CAS  Google Scholar 

  29. Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of evolutionary change in proteins. In: Dayhoff MO (ed) Atlas of protein sequence and structure, vol 5. Natl Biomed Res Found, Washington DC, pp 345–352

    Google Scholar 

  30. Choi KY, Liu RB, Buehring GC (2002) Relative sensitivity and specificity of agar gel immunodiffusion, enzyme immunosorbent assay, and immunoblotting for detection of anti-bovine leukemia virus antibodies in cattle. J Virol Methods 104(1):33–39

    Article  PubMed  CAS  Google Scholar 

  31. Gillet N, Florins A, Boxus M, Burteau C et al (2007) Mechanisms of leukemogenesis induced by bovine leukemia virus: prospects for novel anti-retroviral therapies in humans. Retrovirology 4:18–49

    Article  PubMed  Google Scholar 

  32. Erskine RJ, Corl CM, Gandy JC, Sordillo LM (2011) Effect of infection with bovine leukosis virus on lymphocyte proliferation and apoptosis in dairy cattle. Am J Vet Res 72(8):1059–1154

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sandra Perez for her helpful advice in the proofreading of this manuscript. The authors also thank Patricia Bani and Norma Rodriguez for technical assistance. This work has been partially supported by Consejo Nacional Investigaciones Cientificas y Tecnologicas (PIP 577) and Secretaria Ciencia, Arte y Tecnologia, Universidad Nacional del Centro de la Provincia de Buenos Aires.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Carolina Ceriani.

Additional information

M. A. Juliarena and P. A. Lendez contributed equally to the development of this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juliarena, M.A., Lendez, P.A., Gutierrez, S.E. et al. Partial molecular characterization of different proviral strains of bovine leukemia virus. Arch Virol 158, 63–70 (2013). https://doi.org/10.1007/s00705-012-1459-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-012-1459-8

Keywords

Navigation