Skip to main content

Advertisement

Log in

Development of a real-time RT-PCR method for rapid detection of H9 avian influenza virus in the air

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Avian influenza virus (AIV) has caused serious epidemics all over the world. Notably, the low-pathogenic AIV H9N2 has been spreading widely, leading to enormous economic losses to the poultry industry. To rapidly monitor airborne H9 AIVs in chicken houses, a real-time RT-PCR method was established and used to detect virus in air samples, and it was also compared with the traditional RT-PCR. The results showed that the real-time RT-PCR possessed high specificity and sensitivity for H9 AIVs, and the sensitivity reached 100 copies/reaction, much higher than the traditional RT-PCR; airborne H9 AIVs were found in the six chicken houses by real-time RT-PCR, and their mean concentrations ranged from 1.25×104 to 6.92×104 copies/m3 air. Overall, the real-time PCR is a valuable tool for detecting airborne H9 AIVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1

Similar content being viewed by others

References

  1. Alexander DJ (1995) The epidemiology and control of avian influenza and Newcastle disease. J Comp Pathol 112:105–126

    Article  PubMed  CAS  Google Scholar 

  2. Alexander DJ (2000) A review of avian influenza in different bird species. Vet Microbiol 74:3–13

    Article  PubMed  CAS  Google Scholar 

  3. Alexander DJ (2008) Avian influenza—diagnosis. Zoonoses Public Health 55:16–23

    Article  PubMed  CAS  Google Scholar 

  4. Amaresh D, David LS (2007) Development and bench validation of real-time reverse transcription polymerase chain reaction protocols for rapid detection of the subtypes H6, H9, and H11 of avian influenza viruses in experimental samples. J Vet Diagn Invest 19:625–634

    Article  Google Scholar 

  5. Bano S, Naeem K, Malik SA (2003) Evaluation of pathogenic potential of avian influenza virus serotype H9N2 in chickens. Avian Dis 47:817–822

    Article  PubMed  CAS  Google Scholar 

  6. Brachman PS, Ehrlich R, Eichenwald HF, Gabelli VJ, Kethley TW, Madin SH, Maltman JR, Middlebrook G, Morton JD, Silver IH, Wolfe EK (1964) Standard sampler for assay of airborne microorganisms. Science 144:1295

    Google Scholar 

  7. Brown IH (2006) Advances in molecular diagnostics for avian influenza. Dev Biol 124:93–97

    CAS  Google Scholar 

  8. Butt KM, Smith GJ, Chen H, Zhang LJ, Leung YH (2005) Human infection with an avian H9N2 influenza A virus in Hong Kong in 2003. J Clin Microbiol 43:5760–5767

    Article  PubMed  CAS  Google Scholar 

  9. Chen BL, Zhang ZJ, Chen WB (1994) Isolation and preliminary serological identification of Avian Influenza Virus-type A from chickens. Zhongguo Shou Yi Za Zhi 22:3–5

    Google Scholar 

  10. Chen PS, Lin CK, Tsai FT, Yang CY, Lee CH, Liao YS, Yeh CY, King CC, Wu JL, Wang JL, Lin KH (2009) Quantification of airborne influenza and avian influenza virus in a wet poultry market using a filter/real-time qPCR method. Aerosol Sci Technol 43:290–297

    Article  CAS  Google Scholar 

  11. Choi YK, Ozaki H, Webby RJ, Webster RG, Peiris JS, Poon L, Butt C, Leung YH, Guan Y (2004) Continuing evolution of H9N2 influenza viruses in southeastern China. J Virol 78:8609–8614

    Article  PubMed  CAS  Google Scholar 

  12. Chinivasagam HN, Blackall PJ (2005) Investigation and application of methods for enumerating heterotrophs and Escherichia coli in the air within piggery sheds. J Appl Microbiol 98:1137–1145

    Article  PubMed  CAS  Google Scholar 

  13. Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, Rimmelzwaan GF, Olsen B, Osterhaus AD (2005) Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79:2814–2822

    Article  PubMed  CAS  Google Scholar 

  14. Guo YJ, Li JW, Cheng I (1999) Discovery of men infected by avian influenza A (H9N2) virus. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 13:105–108

    PubMed  CAS  Google Scholar 

  15. Guo YJ, Krauss S, Senne DA, Mo IP, Lo KS, Xiong XP, Norwood M, Shortridge KF, Webster RG, Guan Y (2000) Characterization of the pathogenicity of members of the newly established H9N2 influenza virus lineages in Asia. Virology 267:279–288

    Article  PubMed  CAS  Google Scholar 

  16. Haghighat-Jahromi M, Asasi K, Nili H, Dadras H, Shooshtari AH (2008) Coinfection of avian influenza virus (H9N2 subtype) with infectious bronchitis live vaccine. Arch Virol 153:651–655

    Article  PubMed  CAS  Google Scholar 

  17. Hermann JR, Hoff SJ, Yoon KJ, Burkhardt AC, Evans RB, Zimmerman JJ (2006) Optimization of a sampling system for recovery and detection of airborne porcine reproductive and respiratory syndrome virus and swine influenza virus. Appl Environ Microb 72:4811–4818

    Article  CAS  Google Scholar 

  18. Jin AK, Sung HC, Hyun SK, Sang HS (2006) H9N2 influenza viruses isolated from poultry in Korean live bird markets continuously evolve and cause the severe clinical signs in layers. Vet Microbiol 118:169–176

    Article  Google Scholar 

  19. Landman WJ, Schrier CC (2004) Avian influenza: eradication from commercial poultry is still not in sight. Tijdschr Diergeneeskd 129:782–796

    PubMed  CAS  Google Scholar 

  20. Lee MS, Chang PC, Shien JH, Cheng MC, Shieh SK (2001) Identification and subtyping of avian influenza viruses by reverse transcription PCR. J Virol Methods 97:13–22

    Article  PubMed  CAS  Google Scholar 

  21. Li CJ, Yu KZ, Tian GB, Yu DD, Liu LL, Jing B, Ping JH, Chen HL (2005) Evolution of H9N2 influenza viruses from domestic poultry in Mainland China. Virology 340:70–83

    Article  PubMed  CAS  Google Scholar 

  22. Lin X, Willeke K, Ulevicius V, Grinshpun SA (1997) Effect of sampling time on the collection efficiency of all-glass impinge. Aiha J 58:480–488

    Article  CAS  Google Scholar 

  23. Lin YP, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subbarao K, Guan Y, Krauss S, Shortridge K, Webster R, Cox N, Hay A (2000) Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci USA 97:9654–9658

    Article  PubMed  CAS  Google Scholar 

  24. Li PQ, Zhang J, Muller CP, Chen JX, Yang ZF, Zhang R, Li J, He YS (2008) Development of a multiplex real-time polymerase chain reaction for the detection of influenza virus type A including H5 and H9 subtypes. Diagn Microbiol Infect Dis 61:192–197

    Article  PubMed  CAS  Google Scholar 

  25. Liu H, Liu X, Cheng J, Peng D, Jia L, Huang Y (2003) Phylogenetic analysis of the hemagglutinin genes of twenty-six avian influenza viruses of subtype H9N2 isolated from chickens in China during 1996–2001. Avian Dis 47:116–127

    Article  PubMed  Google Scholar 

  26. Lowen AC, Mubareka S, Steel J, Palese P (2007) Influenza virus transmission is dependent on relative humidity and temperature. PLoS Pathog 3:1470–1476

    Article  PubMed  CAS  Google Scholar 

  27. Mosleh N, Dadras H, Mohammadi A (2009) Molecular quantitation of H9N2 avian influenza virus in various organs of broiler chickens using TaqMan real time PCR. J Mol Genet Med 3:152–157

    PubMed  CAS  Google Scholar 

  28. Nili H, Asasi K (2002) Natural cases and an experimental study of H9N2 avian influenza in commercial broiler chickens of Iran. Avian Pathol 31:247–252

    Article  PubMed  Google Scholar 

  29. Nili H, Asasi K (2003) Avian influenza (H9N2) outbreak in Iran. Avian Dis 47:828–831

    Article  PubMed  CAS  Google Scholar 

  30. Payungporn S, Chutinimitkul S, Chaisingh A, Damrongwantanapokin S, Buranathai S, Amonsin A, Theamboonlers A, Poovorawan Y (2006) Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection. J Virol Methods 131:143–147

    Article  PubMed  CAS  Google Scholar 

  31. Shabat MB, Meir R, Haddas R, Lapin E, Shkoda I, Raibstein I, Perk S, Davidson I (2010) Development of a real-time TaqMan RT-PCR assay for the detection of H9N2 avian influenza viruses. J Virol Methods 168:72–77

    Article  PubMed  Google Scholar 

  32. Shi HY, Liu XF (2006) Molecular mechanism affecting route of transmission for H9N2 subtype AIV. Wei Sheng Wu Xue Bao 46:48–54

    PubMed  CAS  Google Scholar 

  33. Sidoti F, Rizzo F, Costa C, Astegiano S, Curtoni A, Mandola ML, Cavallo R, Bergallo M (2010) Development of real time RT-PCR assays for detection of type A influenza virus and for subtyping of avian H5 and H7 hemagglutinin Subtypes. Mol Biotechnol 44:41–50

    Article  PubMed  CAS  Google Scholar 

  34. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, Lohman K, Daum LT, Suarez DL (2002) Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40:3256–3260

    Article  PubMed  CAS  Google Scholar 

  35. Tellier R (2009) Aerosol transmission of influenza A virus: a review of new studies. J R Soc Interface 6:S783–S790

    Article  PubMed  Google Scholar 

  36. Verdugo C, Cardona CJ, Carpenter TE (2009) Simulation of an early warning system using sentinel birds to detect a change of a low pathogenic avian influenza virus (LPAIV) to high pathogenic avian influenza virus (HPAIV). Prev Vet Med 88:109–119

    Article  PubMed  Google Scholar 

  37. Webster RG (1997) Influenza virus: transmission between species and relevance to emergence of the next human pandemic. Arch Virol Suppl 13:105–113

    PubMed  CAS  Google Scholar 

  38. Xu KM, Li KS, Smith GJ, Li JW, Tai H, Zhang JX, Webster RG, Peiris JS, Chen H, Guan Y (2007) Evolution and molecular epidemiology of H9N2 influenza A viruses from quail in southern China, 2000 to 2005. J Virol 81:2635–2645

    Article  PubMed  CAS  Google Scholar 

  39. Yao ML, Zhang XX, Gao J, Chai TJ, Miao ZM, Ma WM, Qin M, Li QL, Li XX, Liu JB, Zhang HS (2011) The occurrence and transmission characteristics of airborne H9N2 avian influenza virus. Berl Munch Tierarzt 124:136–141

    Google Scholar 

Download references

Acknowledgments

This study was sponsored by the following foundation programs: National Natural Science Foundation of China (30871865); Chinese International Cooperation Program (2009DFA32890).

Conflict of interest

No conflict of interest exits in the submission of this manuscript, and the manuscript was approved by all authors for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongjie Chai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, J., Wei, B., Chai, T. et al. Development of a real-time RT-PCR method for rapid detection of H9 avian influenza virus in the air. Arch Virol 156, 1795–1801 (2011). https://doi.org/10.1007/s00705-011-1054-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-1054-4

Keywords

Navigation