Skip to main content

Advertisement

Log in

Prediction of conserved microRNAs from skin and mucosal human papillomaviruses

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Eight human papillomavirus (HPV) types including four cutaneous HPV types (HPV-5, HPV-8, HPV-20 and HPV-38) and four mucosal HPV types (HPV-6, HPV-11, HPV-16 and HPV-18) were selected for this miRNA study. Pre-miRNAs were predicted using a computer programme, and the conserved mature miRNAs were compared to currently known miRNAs. Predicted HPV miRNAs related to miR-466, -467 and -669 were common and specific to the mucosal HPV types. Northern blot hybridization confirmed a predicted miRNA in HPV-positive cervical cancer cell lines encoded by mucosal HPVs. HPV-38 was predicted to express an miRNA conserved to human let-7a and the expression of let-7a, in HPV-38-positive non-melanoma skin cancer (NMSC) biopsies was 10-fold higher than those with HPV-positive (for other types except HPV-38) and HPV-negative NMSCs, suggesting that let-7a expression might be related to HPV-38 infection. Potential gene targets of the predicted miRNA that may aid HPV in infection and pathogenesis were also analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

miRNA:

MicroRNA

HPV:

Human papillomavirus

siRNA:

Short interfering RNA

NMSC:

Non-melanoma skin cancer

References

  1. Barth S, Pfuhl T, Mamiani A, Ehses C, Roemer K, Kremmer E, Jaker C, Hock J, Meister G, Grasser FA (2008) Epstein–Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Res 36:666–675

    Article  PubMed  CAS  Google Scholar 

  2. Boyerinas B, Park SM, Shomron N, Hedegaard MM, Vinther J, Andersen JS, Feig C, Xu J, Burge CB, Peter ME (2008) Identification of let-7-regulated oncofetal genes. Cancer Res 68:2587–2591

    Article  PubMed  CAS  Google Scholar 

  3. Cai X, Li G, Laimins LA, Cullen BR (2006) Human papillomavirus genotype 31 does not express detectable microRNA levels during latent or productive virus replication. J Virol 80:10890–10893

    Article  PubMed  CAS  Google Scholar 

  4. Cao Y, Li JX, Ji CN, Xu XW, Wu M (2007) Molecular cloning and characterization of a novel splice variant of human ZNF300 gene, which expressed highly in testis. DNA Seq 18(4):312–315

    Google Scholar 

  5. Caldeira S, Zehbe I, Accardi R, Malanchi I, Dong W, Giarre M, de Villiers EM, Filotico R, Boukamp P, Tommasino M (2003) The E6 and E7 proteins of the cutaneous human papillomavirus type 38 display transforming properties. J Virol 77:2195–2206

    Article  PubMed  CAS  Google Scholar 

  6. Cheng H, Ma Y, Ni X, Jiang M, Guo L, Jin W, Xu W, Cao G, Ji C, Yin K, Gu S, Xie Y et al (2002) cDNA cloning and expression analysis of a novel human F-box only protein. Mol Cells 14(1):56–59

    Google Scholar 

  7. de Villiers EM, Fauquet C, Broker TR, Bernard HU, zur Hausen H (2004) Classification of papillomaviruses. Virology 324:17–27

    Article  PubMed  Google Scholar 

  8. Del Villar K, Miller CA (2004) Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer’s disease brain and hippocampal neurons. Proc Natl Acad Sci USA 101(12):4210–4215

    Google Scholar 

  9. Esquela-Kerscher A, Trang P, Wiggins JF, Patrawala L, Cheng A, Ford L, Weidhaas JB, Brown D, Bader AG, Slack FJ (2008) The let-7 microRNA reduces tumor growth in mouse models of lung cancer. Cell Cycle 7:759–764

    Article  PubMed  CAS  Google Scholar 

  10. Felsenstein J (1982) Numerical methods for inferring evolutionary trees. Q Rev Biol 57:379–404

    Article  Google Scholar 

  11. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  12. Forslund O, Antonsson A, Nordin P, Stenquist B, Hansson BG (1999) A broad range of human papillomavirus types detected with a general PCR method suitable for analysis of cutaneous tumours and normal skin. J Gen Virol 80:2437–2443

    PubMed  CAS  Google Scholar 

  13. Ghosh Z, Mallick B, Chakrabarti J (2009) Cellular versus viral microRNAs in host-virus interaction. Nucleic Acids Res 37:1035–1048

    Article  PubMed  CAS  Google Scholar 

  14. Gottwein E, Mukherjee N, Sachse C, Frenzel C, Majoros WH, Chi JT, Braich R, Manoharan M, Soutschek J, Ohler U, Cullen BR (2007) A viral microRNA functions as an orthologue of cellular miR-155. Nature 450:1096–1099

    Article  PubMed  CAS  Google Scholar 

  15. Grey F, Meyers H, White EA, Spector DH, Nelson J (2007) A human cytomegalovirus-encoded microRNA regulates expression of multiple viral genes involved in replication. PLoS Pathog 3:e163

    Article  PubMed  Google Scholar 

  16. Grey F, Hook L, Nelson J (2008) The functions of herpesvirus-encoded microRNAs. Med Microbiol Immunol 197:261–267

    Article  PubMed  CAS  Google Scholar 

  17. Hazard K, Eliasson L, Dillner J, Forslund O (2006) Subtype HPV38b[FA125] demonstrates heterogeneity of human papillomavirus type 38. Int J Cancer 119:1073–1077

    Article  PubMed  CAS  Google Scholar 

  18. Hussain M, Taft RJ, Asgari S (2008) An insect virus-encoded microRNA regulates viral replication. J Virol 82:9164–9170

    Article  PubMed  CAS  Google Scholar 

  19. Iuchi S, Green H (1999) Basonuclin, a zinc finger protein of keratinocytes and reproductive germ cells, binds to the rRNA gene promoter. Proc Natl Acad Sci USA 96(17):9628–9632

    Google Scholar 

  20. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405

    Article  PubMed  CAS  Google Scholar 

  21. Lui WO, Pourmand N, Patterson BK, Fire A (2007) Patterns of known and novel small RNAs in human cervical cancer. Cancer Res 67:6031–6043

    Article  PubMed  CAS  Google Scholar 

  22. Nicholas KB, Nicholas HB Jr, Deerfield DW (1997) Genedoc: Analysis and visualization of genetic variation. EMBnet News 4:14

    Google Scholar 

  23. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18:505–516

    Article  PubMed  CAS  Google Scholar 

  24. Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC, Baker HV, Renne R (2007) Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog 3:e65

    Article  PubMed  Google Scholar 

  25. Skalsky RL, Samols MA, Plaisance KB, Boss IW, Riva A, Lopez MC, Baker HV, Renne R (2007) Kaposi’s sarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol 81:12836–12845

    Article  PubMed  CAS  Google Scholar 

  26. Stern-Ginossar N, Elefant N, Zimmermann A, Wolf DG, Saleh N, Biton M, Horwitz E, Prokocimer Z, Prichard M, Hahn G, Goldman-Wohl D, Greenfield C, Yagel S, Hengel H, Altuvia Y, Margalit H, Mandelboim O (2007) Host immune system gene targeting by a viral miRNA. Science 317:376–381

    Article  PubMed  CAS  Google Scholar 

  27. Sullivan CS, Ganem D (2005) MicroRNAs and viral infection. Mol Cell 20:3–7

    Article  PubMed  CAS  Google Scholar 

  28. Sullivan CS, Grundhoff AT, Tevethia S, Pipas JM, Ganem D (2005) SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells. Nature 435:682–686

    Article  PubMed  CAS  Google Scholar 

  29. Tsang WP, Kwok TT (2008) Let-7a microRNA suppresses therapeutics-induced cancer cell death by targeting caspase-3. Apoptosis 13:1215–1222

    Article  PubMed  CAS  Google Scholar 

  30. Uemura M, Tamura K, Chung S, Honma S, Okuyama A, Nakamura Y, Nakagawa H (2008) Novel 5 alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci 99(1):81–86

    Google Scholar 

  31. Vanhoutteghem A, Djian P (2004) Basonuclin 2: an extremely conserved homolog of the zinc finger protein basonuclin. Proc Natl Acad Sci USA 101(10):3468–3473

    Google Scholar 

  32. Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Munoz N (1999) Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 189:12–19

    Article  PubMed  CAS  Google Scholar 

  33. Wang X, Tang S, Le SY, Lu R, Rader JS, Meyers C, Zheng ZM (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3:e2557

    Article  PubMed  Google Scholar 

  34. Winston JT, Koepp DM, Zhu C, Elledge SJ, Harper JW (1999) A family of mammalian F-box proteins. Curr Biol 9(20):1180–1182

    Google Scholar 

  35. Wuchty S, Fontana W, Hofacker IL, Schuster P (1999) Complete suboptimal folding of RNA and the stability of secondary structures. Biopolymers 49:145–165

    Article  PubMed  CAS  Google Scholar 

  36. Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24:138–148

    Article  PubMed  CAS  Google Scholar 

  37. Zhang Y, Zhou L, Miller CA (1998) A splicing variant of a death domain protein that is regulated by a mitogen-activated kinase is a substrate for c-Jun N-terminal kinase in the human central nervous system. Proc Natl Acad Sci USA 95(5):2586–2591

    Google Scholar 

Download references

Acknowledgments

The authors have no conflicting financial interests. The authors would like to express their thanks to Dr. Ping Zhang (Diamantina Institute, the University of Queensland) for her assistant in gene target prediction. This study was funded by the NHMRC with a Peter Doherty Fellowship (WG), Early Career Researcher Grant (WG) from the University of Queensland, Brisbane, the Prostate Cancer Foundation in Australia (AA) and the Mazda foundation (AA), Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenyi Gu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, W., An, J., Ye, P. et al. Prediction of conserved microRNAs from skin and mucosal human papillomaviruses. Arch Virol 156, 1161–1171 (2011). https://doi.org/10.1007/s00705-011-0974-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-0974-3

Keywords

Navigation