Skip to main content

Advertisement

Log in

Genetic diversity of sweet potato begomoviruses in the United States and identification of a natural recombinant between sweet potato leaf curl virus and sweet potato leaf curl Georgia virus

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In the United States, two sweet potato begomoviruses, sweet potato leaf curl virus (SPLCV) and sweet potato leaf curl Georgia virus (SPLCGV), were previously identified in Louisiana. In recent years, at least seven additional sweet potato begomoviruses have been identified in other parts of the world. In an effort to determine the genetic diversity and distribution of sweet potato begomoviruses in the U.S., we focused our efforts on molecular characterization of field-collected begomovirus isolates in two states: Mississippi and South Carolina. Using rolling-circle amplification, a total of 52 clones of the full genome were obtained. Initial inspection of alignments of the end sequences in these clones revealed a strong genetic diversity. Overall, 10 genotypes could be assigned. A majority of the isolates (50/52) in eight genotypes were shown to be closely related to SPLCV. A representative clone of each genotype was fully sequenced and analyzed. Among them, four genotypes from South Carolina with 91-92% sequence identity to the type member of SPLCV were considered a new strain, whereas four other genotypes from Mississippi with >95% sequence identity to SPLCV were considered variants. In addition, a member of a proposed new begomovirus species was identified after comparative sequence analysis of the isolate [US:SC:646B-9] from South Carolina with less than 89% sequence identity to any known begomovirus. Hence, the provisional name Sweet potato leaf curl South Carolina virus (SPLCSCV) is proposed. Moreover, a natural recombinant consisting of two distinct parental genomic sequences from SPLCV and SPLCGV was identified in the sample [US:MS:1B-3] from Mississippi. Two recombinant breakpoints were identified, one in the origin of replication and the other between C2 and C4. This knowledge about the genetic diversity of begomoviruses infecting sweet potato will likely have a major impact on PCR-based virus detection and on disease management practice through breeding for virus resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Anonymous (2007) International Potato Center: World Sweetpotato Atlas. http://research.cip.cgiar.org/confluence/display/WSA/Global+Sweetpotato+Cultivation

  2. Arguello-Astorga GR, Guevara-Gonzalez RG, Herrera-Estrella LR, Rivera-Bustamante RF (1994) Geminivirus replication origins have a group-specific organization of iterative elements: a model for replication. Virology 203:90–100

    Article  PubMed  CAS  Google Scholar 

  3. Argüello-Astorga GR, Ruiz-Medrano R (2001) An iteron-related domain is associated to Motif 1 in the replication proteins of geminiviruses: identification of potential DNA-protein contacts by a comparative approach. Arch Virol 146:1465–1485

    Article  PubMed  Google Scholar 

  4. Banks GK, Bedford ID, Beitia FJ, Rodriguez-Cerezo E, Markham PG (1999) A novel geminivirus of Ipomoea indica (Convolvulaceae) from southern Spain. Plant Dis 83:486

    Article  Google Scholar 

  5. Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935–8940

    PubMed  CAS  Google Scholar 

  6. Borders HI, Ratcliff TJ (1954) A mosaic of sweetpotato in plant beds and fields in Georgia. Plant Dis Rep 38:6–9

    Google Scholar 

  7. Briddon RW, Mansoor S, Bedford ID, Pinner MS, Saunders K, Stanley J, Zafar Y, Malik KA, Markham PG (2001) Identification of DNA components required for induction of cotton leaf curl disease. Virology 285:234–243

    Article  PubMed  CAS  Google Scholar 

  8. Briddon RW, Bull SE, Bedford ID (2006) Occurrence of Sweet potato leaf curl virus in Sicily. Plant Pathol 55:286

    Article  Google Scholar 

  9. Briddon RW, Stanley J (2006) Subviral agents associated with plant single-stranded DNA viruses. Virology 344:198–210

    Article  PubMed  CAS  Google Scholar 

  10. Bull SE, Briddon RW, Markham PG (2003) Universal primers for the PCR-mediated amplification of DNA 1: a satellite-like molecule associated with begomovirus-DNA beta complexes. Mol Biotechnol 23:83–86

    Article  PubMed  CAS  Google Scholar 

  11. Carey EE, Gibson RW, Fuentes S, Machmud M, Mwanga ROM, Turyamureeba G, Zhang L, Ma D, Abo El-Abbas F, El-Bedewy R, Salazar LF (1999) The causes and control of virus diseases in developing countries: is sweet potato virus disease the main problem? In: CIP (ed) international potato center report for 1997–98, pp 241–248

  12. Chung M-L, Liao C-H, Chen M-J, Chiu R-J (1985) The isolation, transmission and host range of sweet potato leaf curl disease agent in Taiwan. Plant Prot Bull 27:333–341

    Google Scholar 

  13. Clark CA, Hoy MW (2006) Effects of common viruses on yield and quality of Beauregard sweetpotato in Louisiana. Plant Dis 90:83–88

    Article  Google Scholar 

  14. Clark CA, Valverde RA, Fuentes S, Salazar LF, Moyer JW (2002) Research for improved management of sweetpotato pests and diseases: cultivar decline. In: Ames T (ed) Proceedings of the 1st international conference on sweetpotato, food and health for the future. Lima, Peru, pp 103–112. Acta Hortic 583

  15. Cui X, Li G, Wang D, Hu D, Zhou X (2005) A Begomovirus DNAß-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79:10764–10775

    Article  PubMed  CAS  Google Scholar 

  16. Dean FB, Nelson JR, Giesler TL, Lasken RS (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099

    Article  PubMed  CAS  Google Scholar 

  17. Duffy S, Holmes EC (2007) Multiple introductions of the Old World begomovirus Tomato yellow leaf curl virus into the New World. Appl Environ Microbiol 73:7114–7117

    Article  PubMed  CAS  Google Scholar 

  18. Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276

    Article  PubMed  CAS  Google Scholar 

  19. Fauquet CM, Bisaro DM, Briddon RW, Brown JK, Harrison BD, Rybicki EP, Stenger DC, Stanley J (2003) Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of begomovirus species. Arch Virol 148:405–421

    Article  PubMed  CAS  Google Scholar 

  20. Fauquet CM, Briddon RW, Brown JK, Moriones E, Stanley J, Zerbini M, Zhou X (2008) Geminivirus strain demarcation and nomenclature. Arch Virol 153:783–821

    Article  PubMed  CAS  Google Scholar 

  21. Fuentes S, Salazar LF (2003) First report of Sweet potato leaf curl virus in Peru. Plant Dis 87:98

    Article  Google Scholar 

  22. Grigoras I, Timchenko T, Katul L, Grande-Pérez A, Vetten H-J, Bruno Gronenborn B (2009) Reconstitution of authentic nanovirus from multiple cloned DNAs. J Virol 83:10778–10787

    Article  PubMed  CAS  Google Scholar 

  23. Haible D, Kober S, Jeske H (2006) Rolling circle amplification revolutionizes diagnosis and genomics of geminiviruses. J Virol Methods 135:9–16

    Article  PubMed  CAS  Google Scholar 

  24. Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S, Robertson D (1999) Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit Rev Plant Sci 18:71–106

    Article  CAS  Google Scholar 

  25. Harkins GW, Martin DP, Duffy S, Monjane AL, Shepherd DN, Windram OP, Owor BE, Donaldson L, van Antwerpen T, Sayed RA, Flett B, Ramusi M, Rybicki EP, Peterschmitt M, Varsani A (2009) Dating the origins of the maize-adapted strain of Maize streak virus, MSV-A. J Gen Virol 90:3066–3074

    Article  PubMed  CAS  Google Scholar 

  26. Hou YM, Gilbertson RL (1996) Increased pathogenicity in a pseudorecombinant bipartite geminivirus correlates with intermolecular recombination. J Virol 70:5430–5436

    PubMed  CAS  Google Scholar 

  27. Jeske H (2009) Geminiviruses. In: zur Hausen H, de Villiers E-M (eds) Torque Teno Virus: the still elusive human pathogens, vol 331. Springer, Berlin, pp 185–226

    Google Scholar 

  28. Klute KA, Nadler SA, Drake C, Stenger DC (1996) Horseradish curly top virus is a distinct subgroup II geminivirus species with rep and C4 genes derived from a subgroup III ancestor. J Gen Virol 77:1369–1378

    Article  PubMed  CAS  Google Scholar 

  29. Kokkinos CD, Clark CA (2006) Real-time PCR assays for detection and quantification of sweetpotato viruses. Plant Dis 90:783–788

    Article  CAS  Google Scholar 

  30. Krake LR, Rezaian MA, Dry IB (1998) Expression of the tomato leaf curl geminivirus C4 gene produces virus like symptoms. Mol Plant Microbe Interact 11:413–417

    Article  CAS  Google Scholar 

  31. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  32. Latham JR, Saunders K, Pinner MS, Stanley J (1997) Induction of plant cell division by Beet curly top virus gene C4. Plant J 11:1273–1283

    Article  CAS  Google Scholar 

  33. Lefeuvre P, Lett J-M, Reynaud B, Martin DP (2007) Avoidance of protein fold disruption in natural virus recombinants. PLoS Pathog 3:e181. doi:10.1371/journal.ppat.0030181

    Article  PubMed  Google Scholar 

  34. Lefeuvre P, Martin DP, Hoareau M, Naze F, Delatte H, Thierry M, Varsani A, Becker N, Reynaud B, Lett JM (2007) Begomovirus ‘melting pot’ in the south-west Indian Ocean islands: molecular diversity and evolution through recombination. J Gen Virol 88:3458–3468

    Article  PubMed  CAS  Google Scholar 

  35. Lefeuvre P, Lett J-M, Varsani A, Martin DP (2009) Widely conserved recombination patterns among single-stranded DNA viruses. J Virol 83:2697–2707

    Article  PubMed  CAS  Google Scholar 

  36. Li R, Salih S, Hurtt S (2004) Detection of geminiviruses in sweetpotato by polymerase chain reaction. Plant Dis 88:1347–1351

    Article  CAS  Google Scholar 

  37. Ling K-S, Jackson DM, Harrison HF Jr, Simmons AM, Pesic-VanEsbroeck Z (2010) Field evaluation on yield effects of U.S.A. heirloom sweetpotato cultivars infected by Sweet potato leaf curl virus. Crop Prot 29:757–765

    Article  Google Scholar 

  38. Loebenstein G, Fuentes S, Cohen J, Salazar LF (2003) Sweetpotato. In: Loebenstein G, Thottapilly G (eds) Viruses and virus-like diseases of major crops in developing countries. Kluwer, Dortrecht, pp 223–248

    Google Scholar 

  39. Lotrakul P, Valverde RA (1999) Cloning of a DNA-A-like genomic component of Sweet potato leaf curl virus: nucleotide sequence and phylogenetic relationships. Mol Plant Pathol. http://www.bspp.org.uk/mppol/1999/0206LOTRAKUL

  40. Lotrakul P, Valverde RA, Clark CA, Fauquet CM (2003) Properties of a Begomovirus isolated from sweet potato [Ipomoea batatas (L.)Lam] infected with Sweet potato leaf curl virus. Rev Mex Fitopatol 21:128–136

    Google Scholar 

  41. Lozano G, Trenado HP, Valverde RA, Navas-Castillo J (2009) Novel begomovirus species of recombinant nature in sweet potato (Ipomoea batatas) and Ipomoea indica: taxonomic and phylogenetic implications. J Gen Virol 90:2550–2562

    Article  PubMed  CAS  Google Scholar 

  42. Luan YS, Zhang J, An LJ (2006) First report of Sweet potato leaf curl virus in China. Plant Dis 90:1111

    Article  Google Scholar 

  43. Luan YS, Zhang J, Liu DM, Li WL (2007) Molecular characterization of Sweet potato leaf curl virus isolate from China (SPLCV-CN) and its phylogenetic relationship with other members of the Geminiviridae. Virus Genes 35:379–385

    Article  PubMed  CAS  Google Scholar 

  44. Martin DP, Willment JA, Billharz R, Velders R, Odhiambo B, Njuguna J, James D, Rybicki EP (2001) Sequence diversity and virulence in Zea mays of Maize streak virus isolates. Virology 288:247–255

    Article  PubMed  CAS  Google Scholar 

  45. Martin DP, Williamson C, Posada D (2005) RDP2: recombination detection and analysis from sequence alignments. Bioinformatics 21:260–262

    Article  PubMed  CAS  Google Scholar 

  46. Miano DW, LaBonte DR, Clark CA, Valverde RA, Hoy MW, Hurtt S, Li R (2006) First report of a Begomovirus infecting sweetpotato in Kenya. Plant Dis 90:832

    Article  Google Scholar 

  47. Milne I, Lindner D, Bayer M, Husmeier D, McGuire G, Marshall DF, Wright F (2008) TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25:126–127

    Article  PubMed  Google Scholar 

  48. Nawaz-ul-Rehman MS, Nahid N, Mansoor S, Briddon RW, Fauquet CM (2010) Post-transcriptional gene silencing suppressor activity of two non-pathogenic alphasatellites associated with a begomovirus. Virology 405:300–308

    Article  PubMed  CAS  Google Scholar 

  49. North Carolina Sweetpotato Commission (2009) Sweet potato production 1976–2008. http://www.ncsweetpotatoes.com/component/content/article/182.html

  50. Onuki M, Hanada K (1998) PCR amplification and partial nucleotide sequences of three dicot-infecting geminiviruses occurring in Japan. Ann Phytopathol Soc Jpn 64:116–120

    CAS  Google Scholar 

  51. Owor BE, Martin DP, Shepherd DN, Edema R, Monjane AL, Rybicki EP, Thomson JA, Varsani A (2007) Genetic analysis of Maize streak virus isolates from Uganda reveals widespread distribution of a recombinant variant. J Gen Virol 88:3154–3165

    Article  PubMed  CAS  Google Scholar 

  52. Paprotka T, Boiteux LS, Fonseca MEN, Resende RO, Jeske H, Faria JC, Ribeiro SG (2010) Genomic diversity of sweet potato geminiviruses in Brazillian germplasm bank. Virus Res 149:224–233

    Article  PubMed  CAS  Google Scholar 

  53. Paprotka T, Metzler V, Jeske H (2010) The first DNA-1-like α satellites in association with New World begomoviruses in natural infection. Virology 404:148–157

    Article  PubMed  CAS  Google Scholar 

  54. Rigden JE, Krake LR, Rezaian MA, Dry IB (1994) ORF C4 of tomato leaf curl geminivirus is a determinant of symptom severity. Virology 204:847–850

    Article  PubMed  CAS  Google Scholar 

  55. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Press, Cold Spring Harbor

    Google Scholar 

  56. Saunders K, Bedford ID, Briddon RW, Markham PG, Wong SM, Stanley J (2000) A unique virus complex causes Ageratum yellow vein disease. Proc Natl Acad Sci USA 97:6890–6895

    Article  PubMed  CAS  Google Scholar 

  57. Sharma P, Ikegami M (2009) Characterization of signals that dictate nuclear/nucleolar and cytoplasmic shuttling of the capsid protein of Tomato leaf curl Java virus associated with DNA_satellite. Virus Res 144:145–153

    Article  PubMed  CAS  Google Scholar 

  58. Simmons AM, Harrison HF, Ling K-S (2008) Forty-nine new host plant species for Bemisia tabaci (Hemiptera, Aleyrodidae). Entomol Sci 11:385e390

  59. Simmons AM, Ling K-S, Harrison HF, Jackson DM (2009) Sweet potato leaf curl virus: efficiency of acquisition, retention and transmission by Bemisia tabaci (Hemiptera: Aleyrodidae). Crop Prot 28:1007–1011

    Article  CAS  Google Scholar 

  60. Stanley J, Bisaro DM, Briddon RW, Brown JK, Fauquet CM, Harrison BD, Rybicki EP, Stenger DC (2005) Geminiviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy VIIIth report of the ICTV. Elsevier/Academic Press, London, pp 301–326

    Google Scholar 

  61. Suarez-Lopez P, Martinnez-Salas E, Hernandez P, Gutierrez C (1995) Bent DNA in the large intergenic region of wheat dwarf geminivirus. Virology 208:303–311

    Article  PubMed  CAS  Google Scholar 

  62. Valverde RA, Sim J, Lotrakul P (2004) Whitefly transmission of sweet potato viruses. Virus Res 100:123–128

    Article  PubMed  CAS  Google Scholar 

  63. Valverde RA, Clark CA, Valkonen JPT (2007) Viruses and virus disease complexes of sweetpotato. Plant Viruses 1:116–126

    Google Scholar 

  64. van der Walt E, Palmer KE, Martin DP, Rybicki EP (2008) Viable chimaeric viruses confirm the biological importance of sequence specific Maize streak virus movement protein and coat protein interactions. Virol J 5:61

    Article  PubMed  Google Scholar 

  65. van der Walt E, Rybicki EP, Varsani A, Polston JE, Billharz R, Donaldson L, Monjane AL, Martin DP (2009) Rapid host adaptation by extensive recombination. J Gen Virol 90:734–746

    Article  PubMed  Google Scholar 

  66. Varsani A, Shepherd DN, Monjane AL, Owor BE, Erdmann JB, Rybicki EP, Peterschmitt M, Briddon RW, Markham PG, Oluwafemi S, Windram OP, Lefeuvre P, Lett JM, Martin DP (2008) Recombination decreased host specificity and increased mobility may have driven the emergence of Maize streak virus as an agricultural pathogen. J Gen Virol 89:2063–2074

    Article  PubMed  CAS  Google Scholar 

  67. Woolfe JA (1992) Sweetpotato: an untapped food resource. Cambridge University Press, Cambridge

    Google Scholar 

  68. Yang CX, Wu ZJ, Xie LH (2009) First report of the occurrence of Sweet potato leaf curl virus in tall morning glory (Ipomoea purpurea) in China. Plant Dis 93:764

    Article  Google Scholar 

  69. Zhang SC, Wege C, Jeske H (2001) Movement proteins (BC1 and BV1) of Abutilon mosaic geminivirus are cotransported in and between cells of sink but not of source leaves as detected by green fluorescent protein tagging. Virology 290:249–260

    Article  PubMed  CAS  Google Scholar 

  70. Zrachya A, Glick E, Levy Y, Arazi T, Citovsky V, Gafni Y (2007) Suppressor of RNA silencing encoded by Tomato yellow leaf curl virus-Israel. Virology 358:159–165

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. D. Michael Jackson and Alvin Simmons for critical reading of the manuscript, and Andrea Gilliard and Kim Bowie for excellent technical assistance. Funding for this research was supported in part by a USDA-NIFA grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Shu Ling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, S.C., Ling, KS. Genetic diversity of sweet potato begomoviruses in the United States and identification of a natural recombinant between sweet potato leaf curl virus and sweet potato leaf curl Georgia virus. Arch Virol 156, 955–968 (2011). https://doi.org/10.1007/s00705-011-0930-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-0930-2

Keywords

Navigation