Skip to main content
Log in

Identification of RNA regions that determine temperature sensitivities in betanodaviruses

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Betanodaviruses, the causative agents of viral nervous necrosis in marine fish, have bipartite positive-sense RNA genomes. The larger genomic segment, RNA1 (~3.1 kb), encodes an RNA-dependent RNA polymerase (protein A), and the smaller genomic segment RNA2 (~1.4 kb) codes for the coat protein. These viruses can be classified into four genotypes, designated striped jack nervous necrosis virus (SJNNV), redspotted grouper nervous necrosis virus (RGNNV), tiger puffer nervous necrosis virus (TPNNV), and barfin flounder nervous necrosis virus (BFNNV), based on similarities in their partial RNA2 sequences. The optimal temperatures for the growth of these viruses are 20–25°C (SJNNV), 25–30°C (RGNNV), 20°C (TPNNV), and 15–20°C (BFNNV). However, little is known about the mechanisms underlying the temperature sensitivity of these viruses. We first constructed two reassortants between SJNNV and RGNNV to test their temperature sensitivity. The levels of viral growth and RNA replication of these reassortants and parental viruses in cultured fish cells were similar at 25°C. However, the levels of all of the viruses but RGNNV were markedly reduced at 30°C. These results indicate that both RNA1 and RNA2 control the temperature sensitivity of betanodaviruses by modulating RNA replication or earlier viral growth processes. We then constructed ten mutated RGNNVs, the RNA1 segments of which were chimeric between SJNNV and RGNNV, and showed that only chimeric viruses bearing the RGNNV RNA1 region, encoding amino acid residues 1–445, grew similarly to the parental RGNNV at 30°C. This portion of protein A is known to serve as a mitochondrial-targeting signal rather than functioning as an enzymatic domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ackermann M, Padmanabhan R (2001) De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276:39926–39937

    Article  CAS  PubMed  Google Scholar 

  2. Arita M, Shimizu H, Nagata N, Ami Y, Suzaki Y, Sata T, Iwasaki T, Miyamura T (2005) Temperature-sensitive mutants of enterovirus 71 show attenuation in cynomolgus monkeys. J Gen Virol 86:1391–1401

    Article  CAS  PubMed  Google Scholar 

  3. Ball LA, Amann JM, Garrett BK (1992) Replication of nodamura virus after transfection of viral RNA into mammalian cells in culture. J Virol 66:2326–2334

    CAS  PubMed  Google Scholar 

  4. Ball LA, Johnson KL (1998) Nodaviruses of insects. In: Miller LK, Ball LA (eds) The insect viruses. Plenum Press, New York, pp 225–267

    Google Scholar 

  5. Banu GR, Nakai T (2004) Inoculation of BALB/c mice with fish-pathogenic nodaviruses. J Comp Pathol 130:202–204

    Article  CAS  PubMed  Google Scholar 

  6. Capen CM, Teschke CM (2000) Folding defects caused by single amino acid substitutions in a subunit are not alleviated by assembly. Biochemistry 39:1142–1151

    Article  CAS  PubMed  Google Scholar 

  7. Chi SC, Lin SC, Su HM, Hu WW (1999) Temperature effect on nervous necrosis virus infection in grouper cell line and in grouper larvae. Virus Res 63:107–114

    Article  CAS  PubMed  Google Scholar 

  8. Chi JH, Wilson DW (2000) ATP-dependent localization of the herpes simplex virus capsid protein VP26 to sites of procapsid maturation. J Virol 74:1468–1476

    Article  CAS  PubMed  Google Scholar 

  9. Choi IR, White KA (2001) An RNA activator of subgenomic mRNA1 transcription in tomato bushy stunt virus. J Biol Chem 277:3760–3766

    Article  PubMed  Google Scholar 

  10. Ciulli S, Gallardi D, Scagliarini A, Battilani M, Hedrick RP, Prosperi S (2006) Temperature-dependency of Betanodavirus infection in SSN-1 cell line. Dis Aquat Organ 68:261–265

    Article  CAS  PubMed  Google Scholar 

  11. Cutrín JM, Dopazo CP, Thiéry R, Leao P, Olveira JG, Barja JL, Bandín I (2007) Emergence of pathogenic betanodaviruses belonging to the SJNNV genogroup in farmed fish species from the Iberian Peninsula. J Fish Dis 30:225–232

    Article  PubMed  Google Scholar 

  12. Eckerle LD, Ball LA (2002) Replication of the RNA segments of a bipartite viral genome is coordinated by a transactivating subgenomic RNA. Virology 296:165–176

    Article  CAS  PubMed  Google Scholar 

  13. Frerichs GN, Rodger HD, Peric Z (1996) Cell culture isolation of piscine neuropathy nodavirus from juvenile sea bass, Dicentrarchus labrax. J Gen Virol 77:2067–2071

    Article  CAS  PubMed  Google Scholar 

  14. Gomez DK, Sato J, Mushiake K, Isshiki T, Okinaka Y, Nakai T (2004) PCR-based detection of betanodaviruses from cultured and wild marine fish with no clinical signs. J Fish Dis 27:603–608

    Article  CAS  PubMed  Google Scholar 

  15. Guenther RH, Sit TL, Gracz HS, Dolan MA, Townsend HL, Liu G, Newman WH, Agris PF, Lommel SA (2004) Structural characterization of an intermolecular RNA-RNA interaction involved in the transcription regulation element of a bipartite plant virus. Nucleic Acids Res 32:2819–2828

    Article  CAS  PubMed  Google Scholar 

  16. Guo YX, Chan SW, Kwang J (2004) Membrane association of greasy grouper nervous necrosis virus protein A and characterization of its mitochondrial localization targeting signal. J Virol 78:6498–6508

    Article  CAS  PubMed  Google Scholar 

  17. Hata N, Okinaka Y, Sakamoto T, Iwamoto T, Nakai T (2007) Upper temperature limits for the multiplication of betanodaviruses. Fish Pathol 42:225–228

    Article  Google Scholar 

  18. Hazelton PR, Coombs KM (1995) The reovirus mutant tsA279 has temperature-sensitive lesions in the M2 and L2 genes: the M2 gene is associated with decreased viral protein production and blockade in transmembrane transport. Virology 207:46–58

    Article  CAS  PubMed  Google Scholar 

  19. Hoffmann E, Mahmood K, Chen Z, Yang CF, Spaete J, Greenberg HB, Herlocher ML, Jin H, Kemble G (2005) Multiple gene segments control the temperature sensitivity and attenuation phenotypes of ca B/Ann Arbor/1/66. J Virol 79:11014–11021

    Article  CAS  PubMed  Google Scholar 

  20. Honda A, Mukaigawa J, Yokoiyama A, Kato A, Ueda S, Nagata K, Krystal M, Nayak D, Ishihama A (1990) Purification and molecular structure of RNA polymerase from influenza virus A/PR8. J Biochem 107:624–628

    CAS  PubMed  Google Scholar 

  21. Ito M, Takeuchi T, Nishio M, Kawano M, Komada H, Tsurudome M, Ito Y (2004) Early stage of establishment of persistent Sendai virus infection: unstable dynamic phase and then selection of viruses which are tightly cell associated, temperature sensitive, and capable of establishing persistent infection. J Virol 78:11939–11951

    Article  CAS  PubMed  Google Scholar 

  22. Ito Y, Okinaka Y, Mori K, Sugaya T, Nishioka T, Oka M, Nakai T (2008) The variable region of RNA2 is sufficient to determine host specificity in betanodaviruses. Dis Aquat Organ 79:199–205

    Article  CAS  PubMed  Google Scholar 

  23. Iwamoto T, Mori K, Arimoto M, Nakai T (1999) High permissivity of the fish cell line SSN-1 for piscine nodaviruses. Dis Aquat Organ 39:37–47

    Article  CAS  PubMed  Google Scholar 

  24. Iwamoto T, Nakai T, Mori K, Arimoto M, Furusawa I (2000) Cloning of the fish cell line SSN-1 for piscine nodaviruses. Dis Aquat Organ 43:81–89

    Article  CAS  PubMed  Google Scholar 

  25. Iwamoto T, Mise K, Mori K, Arimoto M, Nakai T, Okuno T (2001) Establishment of an infectious RNA transcription system for striped jack nervous necrosis virus, the type species of the betanodaviruses. J Gen Virol 82:2653–2662

    CAS  PubMed  Google Scholar 

  26. Iwamoto T, Okinaka Y, Mise K, Mori K, Arimoto M, Okuno T, Nakai T (2004) Identification of host-specificity determinants in betanodaviruses using reassortants between striped jack nervous necrosis virus and sevenband grouper nervous necrosis virus. J Virol 78:1256–1262

    Article  CAS  PubMed  Google Scholar 

  27. Iwamoto T, Mise K, Takeda A, Okinaka Y, Mori K, Arimoto M, Okuno T, Nakai T (2005) Characterization of Striped jack nervous necrosis virus subgenomic RNA3 and biological activities of its encoded protein B2. J Gen Virol 86:2807–2816

    Article  CAS  PubMed  Google Scholar 

  28. Jin H, Zhou H, Lu B, Kemble G (2004) Imparting temperature sensitivity and attenuation in ferrets to A/Puerto Rico/8/34 influenza virus by transferring the genetic signature for temperature sensitivity from cold-adapted A/Ann Arbor/6/60. J Virol 78:995–998

    Article  CAS  PubMed  Google Scholar 

  29. Johansen R, Sommerset I, Tørud B, Korsnes K, Hjortaas MJ, Nilsen F, Nerland AH, Dannevig BH (2004) Characterization of nodavirus and viral encephalopathy and retinopathy in farmed turbot Scophthalmus maximus (L.). J Fish Dis 27:591–601

    Article  CAS  PubMed  Google Scholar 

  30. Kobayashi M, Tuchiya K, Nagata K, Ishihama A (1992) Reconstitution of influenza virus RNA polymerase from three subunits expressed using recombinant baculovirus system. Virus Res 22:235–245

    Article  CAS  PubMed  Google Scholar 

  31. Lindenbach BD, Sgro JY, Ahlquist P (2002) Long-distance base pairing in flock house virus RNA1 regulates subgenomic RNA3 synthesis and RNA2 replication. J Virol 76:3905–3919

    Article  CAS  PubMed  Google Scholar 

  32. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288:911–940

    Article  CAS  PubMed  Google Scholar 

  33. Matsumoto K, Sawada H, Matsumoto K, Hamada H, Yoshimoto E, Ito T, Takeuchi S, Tsuda S, Suzuki K, Kobayashi K, Kiba A, Okuno T, Hikichi Y (2008) The coat protein gene of tobamovirus P 0 pathotype is a determinant for activation of temperature-insensitive L 1a-gene-mediated resistance in Capsicum plants. Arch Virol 153:645–650

    Article  CAS  PubMed  Google Scholar 

  34. Mézeth KB, Nylund S, Henriksen H, Patel S, Nerland AH, Szilvay AM (2007) RNA-dependent RNA polymerase from Atlantic halibut nodavirus contains two signals for localization to the mitochondria. Virus Res 130:43–52

    Article  PubMed  Google Scholar 

  35. Mizumoto H, Hikichi Y, Okuno T (2002) The 3′-untranslated region of RNA1 as a primary determinant of temperature sensitivity of Red clover necrotic mosaic virus Canadian strain. Virology 293:320–327

    Article  CAS  PubMed  Google Scholar 

  36. Mori K, Nakai T, Muroga K, Arimoto M, Mushiake K, Furusawa I (1992) Properties of a new virus belonging to nodaviridae found in larval striped jack (Pseudocaranx dentex) with nervous necrosis. Virology 187:368–371

    Article  CAS  PubMed  Google Scholar 

  37. Munday BL, Kwang J, Moody N (2002) Betanodavirus infections of teleost fish: a review. J Fish Dis 25:127–142

    Article  Google Scholar 

  38. Newcomb WW, Booy FP, Brown JC (2007) Uncoating the herpes simplex virus genome. J Mol Biol 370:633–642

    Article  CAS  PubMed  Google Scholar 

  39. Nishizawa T, Furuhashi M, Nagai T, Nakai T, Muroga K (1997) Genomic classification of fish nodaviruses by molecular phylogenetic analysis of the coat protein gene. Appl Environ Microbiol 63:1633–1636

    CAS  PubMed  Google Scholar 

  40. Office International des Epizooties (OIE) (2006) Viral encephalopathy and retinopathy. In: Manual of diagnostic tests for aquatic animals, 5th edn. OIE, Paris, pp 169–175

    Google Scholar 

  41. Ohsato S, Miyanishi M, Shirako Y (2003) The optimal temperature for RNA replication in cells infected by soil-borne wheat mosaic virus is 17°C. J Gen Virol 84:995–1000

    Article  CAS  PubMed  Google Scholar 

  42. Okinaka Y, Mise K, Suzuki E, Okuno T, Furusawa I (2001) The C terminus of brome mosaic virus coat protein controls viral cell-to-cell and long-distance movement. J Virol 75:5385–5390

    Article  CAS  PubMed  Google Scholar 

  43. Okinaka Y, Nakai T (2008) Comparisons among the complete genomes of four betanodavirus genotypes. Dis Aquat Organ 80:113–121

    Article  CAS  PubMed  Google Scholar 

  44. Osman TA, Buck KW (1996) Complete replication in vitro of tobacco mosaic virus RNA by a template-dependent, membrane-bound RNA polymerase. J Virol 70:6227–6234

    CAS  PubMed  Google Scholar 

  45. Peeples ME, Glickman RL, Gallagher JP, Bratt MA (1988) Temperature-sensitive mutants of Newcastle disease virus altered in HN glycoprotein size, stability, or antigenic maturity. Virology 164:284–289

    Article  CAS  PubMed  Google Scholar 

  46. Pogany J, Fabian MR, White KA, Nagy PD (2003) A replication silencer element in a plus-strand RNA virus. EMBO J 22:5602–5611

    Article  CAS  PubMed  Google Scholar 

  47. Reed LJ, Muench H (1938) A simple method of estimating fifty percent end points. Am J Hyg 27:493–497

    Google Scholar 

  48. Sakamoto T, Okinaka Y, Mori K, Sugaya T, Nishioka T, Yamashita H, Oka M, Nakai T (2008) Phylogenetic analysis of betanodavirus RNA2 identified from wild marine fish in oceanic regions. Fish Pathol 43:19–27

    Article  Google Scholar 

  49. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  50. Schaad MC, Jensen PE, Carrington JC (1997) Formation of plant RNA virus replication complexes on membranes: role of an endoplasmic reticulum-targeted viral protein. EMBO J 16:4049–4059

    Article  CAS  PubMed  Google Scholar 

  51. Schneemann A, Ball AL, Delsert C, Johnson JE, Nishizawa T (2005) Family Nodaviridae. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy. Academic Press, San Diego, pp 865–872

    Google Scholar 

  52. Teschke CM, King J (1995) In vitro folding of phage P22 coat protein with amino acid substitutions that confer in vivo temperature sensitivity. Biochemistry 34:6815–6826

    Article  CAS  PubMed  Google Scholar 

  53. Thiéry R, Cozien J, de Boisséson C, Kerbart-Boscher S, Névarez L (2004) Genomic classification of new betanodavirus isolates by phylogenetic analysis of the coat protein gene suggests a low host-fish species specificity. J Gen Virol 85:3079–3087

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by grants-in-aid for Scientific Research (18580185, 20380111) from the Ministry of Education, Culture, Sports, Science and Technology, Japan and a grant-in-aid for Scientific Research (18076) from the Ministry of Agriculture, Forestry and Fisheries of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Okinaka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hata, N., Okinaka, Y., Iwamoto, T. et al. Identification of RNA regions that determine temperature sensitivities in betanodaviruses. Arch Virol 155, 1597–1606 (2010). https://doi.org/10.1007/s00705-010-0736-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0736-7

Keywords

Navigation