Skip to main content
Log in

The amino terminus of the salmonid alphavirus capsid protein determines subcellular localization and inhibits cellular proliferation

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Salmonid alphavirus (SAV) is the most divergent member of the family Togaviridae and constitutes a threat to farming of salmonid fish in Europe. Here, we report cloning, expression and preliminary functional analysis of the capsid protein of SAV, confirming it to be expressed as an approximately 31-kDa protein in infected cells. The protein localizes strictly to the cytoplasm in Chinook salmon embryo cells, and either to the nucleus or cytoplasm in bluegill fry cells. An expression study of full-length and different truncated versions of the SAV capsid fused to the enhanced green fluorescent protein demonstrated that the localization is independent of other viral components in both cell lines, and controlled by the N-terminal 82 aa, which include a conserved, predicted helix and a downstream positively charged region. Thus, the results suggest that the SAV capsid possesses a cell-type-dependent potential for nuclear import and export. Moreover, the SAV capsid and its N-terminal 82 aa were shown to be associated with inhibition of cellular proliferation, a hallmark of the cytopathic effect caused by SAV. These results highlight that the SAV capsid is a multifunctional protein with possible importance for pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  2. Aguilar PV, Weaver SC, Basler CF (2007) Capsid protein of eastern equine encephalitis virus inhibits host cell gene expression. J Virol 81:3866–3876

    Article  CAS  PubMed  Google Scholar 

  3. Aguilar PV, Leung LW, Wang E, Weaver SC, Basler CF (2008) A five-amino-acid deletion of the eastern equine encephalitis virus capsid protein attenuates replication in mammalian systems but not in mosquito cells. J Virol 82:6972–6983

    Article  CAS  PubMed  Google Scholar 

  4. Atasheva S, Garmashova N, Frolov I, Frolova E (2008) Venezuelan equine encephalitis virus capsid protein inhibits nuclear import in Mammalian but not in mosquito cells. J Virol 82:4028–4041

    Article  CAS  PubMed  Google Scholar 

  5. Beatch MD, Hobman TC (2000) Rubella virus capsid associates with host cell protein p32 and localizes to mitochondria. J Virol 74:5569–5576

    Article  CAS  PubMed  Google Scholar 

  6. Brock R, Hamelers IH, Jovin TM (1999) Comparison of fixation protocols for adherent cultured cells applied to a GFP fusion protein of the epidermal growth factor receptor. Cytometry 35:353–362

    Article  CAS  PubMed  Google Scholar 

  7. Claros MG (1995) MitoProt, a Macintosh application for studying mitochondrial proteins. Comput Appl Biosci 11:441–447

    CAS  PubMed  Google Scholar 

  8. Elgizoli M, Dai Y, Kempf C, Koblet H, Michel MR (1989) Semliki Forest virus capsid protein acts as a pleiotropic regulator of host cellular protein synthesis. J Virol 63:2921–2928

    CAS  PubMed  Google Scholar 

  9. Favre D, Studer E, Michel MR (1994) Two nucleolar targeting signals present in the N-terminal part of Semliki Forest virus capsid protein. Arch Virol 137:149–155

    Article  CAS  PubMed  Google Scholar 

  10. Firth AE, Chung BY, Fleeton MN, Atkins JF (2008) Discovery of frameshifting in alphavirus 6K resolves a 20-year enigma. Virol J 5:108

    Article  PubMed  Google Scholar 

  11. Garcia-Rosado E, Markussen T, Kileng O, Baekkevold ES, Robertsen B, Mjaaland S, Rimstad E (2008) Molecular and functional characterization of two infectious salmon anaemia virus (ISAV) proteins with type I interferon antagonizing activity. Virus Res 133:228–238

    Article  CAS  PubMed  Google Scholar 

  12. Garmashova N, Atasheva S, Kang W, Weaver SC, Frolova E, Frolov I (2007) Analysis of Venezuelan equine encephalitis virus capsid protein function in the inhibition of cellular transcription. J Virol 81:13552–13565

    Article  CAS  PubMed  Google Scholar 

  13. Garmashova N, Gorchakov R, Volkova E, Paessler S, Frolova E, Frolov I (2007) The Old World and New World alphaviruses use different virus-specific proteins for induction of transcriptional shutoff. J Virol 81:2472–2484

    Article  CAS  PubMed  Google Scholar 

  14. Garoff H, Sjoberg M, Cheng RH (2004) Budding of alphaviruses. Virus Res 106:103–116

    Article  CAS  PubMed  Google Scholar 

  15. Graham DA, Wilson C, Jewhurst H, Rowley H (2008) Cultural characteristics of salmonid alphaviruses—influence of cell line and temperature. J Fish Dis 31:859–868

    Article  CAS  PubMed  Google Scholar 

  16. Griffin DE (2007) Alphaviruses. In: Knipe DM, Howley PM (eds) Field’s virology, vol 1. Lippincott Williams & Wilkins, Philadelphia, pp 1023–1067

  17. Hodneland K, Bratland A, Christie KE, Endresen C, Nylund A (2005) New subtype of salmonid alphavirus (SAV), Togaviridae, from Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss in Norway. Dis Aquat Organ 66:113–120

    Article  CAS  PubMed  Google Scholar 

  18. Hong EM, Perera R, Kuhn RJ (2006) Alphavirus capsid protein helix I controls a checkpoint in nucleocapsid core assembly. J Virol 80:8848–8855

    Article  CAS  PubMed  Google Scholar 

  19. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  20. Jalanko A, Soderlund H (1985) The repeated regions of Semliki Forest virus defective-interfering RNA interferes with the encapsidation process of the standard virus. Virology 141:257–266

    Article  CAS  PubMed  Google Scholar 

  21. Karlsen M, Hodneland K, Endresen C, Nylund A (2006) Genetic stability within the Norwegian subtype of salmonid alphavirus (family Togaviridae). Arch Virol 151:861–874

    Article  CAS  PubMed  Google Scholar 

  22. Kaariainen L, Ahola T (2002) Functions of alphavirus nonstructural proteins in RNA replication. Prog Nucl Acid Res Mol Biol 71:187–222

    Article  CAS  Google Scholar 

  23. la Cour T, Kiemer L, Molgaard A, Gupta R, Skriver K, Brunak S (2004) Analysis and prediction of leucine-rich nuclear export signals. Protein Eng Des Sel 17:527–536

    Article  CAS  PubMed  Google Scholar 

  24. Li ML, Stollar V (2004) Identification of the amino acid sequence in Sindbis virus nsP4 that binds to the promoter for the synthesis of the subgenomic RNA. Proc Natl Acad Sci USA 101:9429–9434

    Article  CAS  PubMed  Google Scholar 

  25. Linger BR, Kunovska L, Kuhn RJ, Golden BL (2004) Sindbis virus nucleocapsid assembly: RNA folding promotes capsid protein dimerization. RNA 10:128–138

    Article  CAS  PubMed  Google Scholar 

  26. Lombard Y, Poindron P, Porte A (1979) Origin and formation of different types of vacuoles induced by the multiplication of the alphavirus Sindbis virus in various cell systems. Can J Microbiol 25:1452–1459

    Article  CAS  PubMed  Google Scholar 

  27. Luers AJ, Adams SD, Smalley JV, Campanella JJ (2005) A phylogenomic study of the genus alphavirus employing whole genome comparison. Comp Funct Genomics 6:217–227

    Article  CAS  PubMed  Google Scholar 

  28. Magliano D, Marshall JA, Bowden DS, Vardaxis N, Meanger J, Lee JY (1998) Rubella virus replication complexes are virus-modified lysosomes. Virology 240:57–63

    Article  CAS  PubMed  Google Scholar 

  29. McLoughlin MF, Graham DA (2007) Alphavirus infections in salmonids—a review. J Fish Dis 30:511–531

    Article  CAS  PubMed  Google Scholar 

  30. Michel MR, Elgizoli M, Dai Y, Jakob R, Koblet H, Arrigo AP (1990) Karyophilic properties of Semliki Forest virus nucleocapsid protein. J Virol 64:5123–5131

    CAS  PubMed  Google Scholar 

  31. Mitchell C, de Andrade-Rozental AF, Souto-Padron T, Carvalho MG (1997) Identification of mayaro virus nucleocapsid protein in nucleus of Aedes albopictus cells. Virus Res 47:67–77

    Article  CAS  PubMed  Google Scholar 

  32. Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36

    Article  CAS  PubMed  Google Scholar 

  33. Perera R, Owen KE, Tellinghuisen TL, Gorbalenya AE, Kuhn RJ (2001) Alphavirus nucleocapsid protein contains a putative coiled coil alpha-helix important for core assembly. J Virol 75:1–10

    Article  CAS  PubMed  Google Scholar 

  34. Powers AM, Brault AC, Shirako Y, Strauss EG, Kang W, Strauss JH, Weaver SC (2001) Evolutionary relationships and systematics of the alphaviruses. J Virol 75:10118–10131

    Article  CAS  PubMed  Google Scholar 

  35. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  36. Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562

    CAS  PubMed  Google Scholar 

  37. Todd D, Jewhurst VA, Welsh MD, Borghmans BJ, Weston JH, Rowley HM, Mackie DP, McLoughlin MF (2001) Production and characterisation of monoclonal antibodies to salmon pancreas disease virus. Dis Aquat Organ 46:101–108

    Article  CAS  PubMed  Google Scholar 

  38. Urbanowski MD, Ilkow CS, Hobman TC (2008) Modulation of signaling pathways by RNA virus capsid proteins. Cell Signal 20:1227–1236

    Article  CAS  PubMed  Google Scholar 

  39. van der Heijden MW, Bol JF (2002) Composition of alphavirus-like replication complexes: involvement of virus and host encoded proteins. Arch Virol 147:875–898

    Article  PubMed  Google Scholar 

  40. van Steeg H, Kasperaitis M, Voorma HO, Benne R (1984) Infection of neuroblastoma cells by Semliki Forest virus. The interference of viral capsid protein with the binding of host messenger RNAs into initiation complexes is the cause of the shut-off of host protein synthesis. Eur J Biochem 138:473–478

    Article  PubMed  Google Scholar 

  41. Villoing S, Bearzotti M, Chilmonczyk S, Castric J, Bremont M (2000) Rainbow trout sleeping disease virus is an atypical alphavirus. J Virol 74:173–183

    Article  CAS  PubMed  Google Scholar 

  42. Weston J, Villoing S, Bremont M, Castric J, Pfeffer M, Jewhurst V, McLoughlin M, Rodseth O, Christie KE, Koumans J, Todd D (2002) Comparison of two aquatic alphaviruses, salmon pancreas disease virus and sleeping disease virus, by using genome sequence analysis, monoclonal reactivity, and cross-infection. J Virol 76:6155–6163

    Article  CAS  PubMed  Google Scholar 

  43. Weston JH, Welsh MD, McLoughlin MF, Todd D (1999) Salmon pancreas disease virus, an alphavirus infecting farmed Atlantic salmon, Salmo salar L. Virology 256:188–195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the University of Bergen and the Norwegian Research Council Grant 185188/S40. Confocal work was done using the Molecular Imaging Centre (MIC) facilities (FUGE platform), University of Bergen. MK is grateful to Endy Spriet at MIC for excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marius Karlsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlsen, M., Yousaf, M.N., Villoing, S. et al. The amino terminus of the salmonid alphavirus capsid protein determines subcellular localization and inhibits cellular proliferation. Arch Virol 155, 1281–1293 (2010). https://doi.org/10.1007/s00705-010-0717-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0717-x

Keywords

Navigation