Skip to main content
Log in

Genetic and biological characterization of avian influenza H5N1 viruses isolated from wild birds and poultry in Western Siberia

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Three viruses included in the study were isolated from dead birds (A/duck/Omsk/1822/2006, A/chicken/Reshoty/02/2006, and A/duck/Tuva/01/2006), whereas the virus A/common gull/Chany/P/2006 was isolated from an apparently healthy gull during outbreaks of highly pathogenic avian influenza in Russia in 2006. The intravenous pathogenicity index (IVPI) of viruses A/duck/Omsk/1822/2006, A/chicken/Reshoty/02/2006, and A/duck/Tuva/01/2006 ranged from 2.7 to 3.0, while the virus A/common gull/Chany/P/2006 had a markedly lower IVPI of 1.7. The virus A/common gull/Chany/P/2006 had a unique pattern of six amino acid substitutions in the regions of viral proteins crucial for virulence of H5N1 viruses. We hypothesize that these substitutions may affect the pathogenicity of A/common gull/Chany/P/2006.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Alexander DJ, Brown IH (2009) History of highly pathogenic avian influenza. Rev Sci Tech 28:19–38

    CAS  PubMed  Google Scholar 

  2. Chen H, Deng G, Li Z, Tian G, Li Y, Jiao P, Zhang L, Liu Z, Webster RG, Yu K (2004) The evolution of H5N1 influenza viruses in ducks in southern China. Proc Natl Acad Sci USA 101(28):10452–10457

    Article  CAS  PubMed  Google Scholar 

  3. Chen H, Smith GJD, Zhang SY, Qin K, Wang J, Li KS, Webster RG, Peiris JS, Guan Y (2005) Avian flu: H5N1 virus outbreak in migratory waterfowl. Nature 436:191–192

    Article  CAS  PubMed  Google Scholar 

  4. Cheung CL, Rayner JM, Smith GJ, Wang P, Naipospos TS, Zhang J, Yuen KY, Webster RG, Peiris JS, Guan Y, Chen H (2006) Distribution of amantadine-resistant H5N1 avian influenza variants in Asia. J Infect Dis 193(12):1626–1629

    Article  CAS  PubMed  Google Scholar 

  5. Evseenko VA, Bukin EK, Zaykovskaya AV, Sharshov KA, Ternovoi VA, Ignatyev GM, Shestopalov AM (2007) Experimental infection of H5N1 HPAI in BALB/c mice. Virol J 4:77

    Article  PubMed  Google Scholar 

  6. Fan S, Deng G, Song J, Tian G, Suo Y, Jiang Y, Guan Y, Bu Z, Kawaoka Y, Chen H (2009) Two amino acid residues in the matrix protein M1 contribute to the virulence difference of H5N1 avian influenza viruses in mice. Virology 384(1):28–32

    Article  CAS  PubMed  Google Scholar 

  7. Guo Z, Chen LM, Zeng H, Gomez JA, Plowden J, Fujita T, Katz JM, Donis RO, Sambhara S (2007) NS1 protein of influenza A virus inhibits the function of intracytoplasmic pathogen sensor, RIG-I. Am J Respir Cell Mol Biol 36:263–269

    Article  CAS  PubMed  Google Scholar 

  8. Ha Y, Stevens DJ, Skehel JJ, Wiley DC (2002) H5 avian and H9 swine influenza virus haemagglutinin structures: possible origin of influenza subtypes. EMBO J 21:865–875

    Article  CAS  PubMed  Google Scholar 

  9. Hay AJ, Zambon MC, Wolstenholme AJ, Skehel JJ, Smith MH (1986) Molecular basis of resistance of influenza A viruses to amantadine. J Antimicrob Chemother 18(Suppl B):19–29

    CAS  PubMed  Google Scholar 

  10. Hoffmann EJ, Stech Y, Guan RG, Webster DR (2001) Universal primer set for the full-length amplification of all influenza A viruses. Arch Virol 146:2275–2289

    Article  CAS  PubMed  Google Scholar 

  11. Horimoto T, Kawaoka Y (2009) Designing vaccines for pandemic influenza. Curr Top Microbiol Immunol 333:165–176

    Article  PubMed  Google Scholar 

  12. Hulse DJ, Webster RG, Russell RJ, Perez DR (2004) Molecular determinants within the surface proteins involved in the pathogenicity of H5N1 influenza viruses in chickens. J Virol 78:9954–9964

    Article  CAS  PubMed  Google Scholar 

  13. Jiao P, Tian G, Li Y, Deng G, Jiang Y, Liu C, Liu W, Bu Z, Kawaoka Y, Chen H (2008) A single-amino-acid substitution in the NS1 protein changes the pathogenicity of H5N1 avian influenza viruses in mice. J Virol 82(3):1146–1154

    Article  CAS  PubMed  Google Scholar 

  14. Keawcharoen J, van Riel D, van Amerongen G, Bestebroer T, Beyer WE, van Lavieren R, Osterhaus AD, Fouchier RA, Kuiken T (2008) Wild ducks as long-distance vectors of highly pathogenic avian influenza virus (H5N1). Emerg Infect Dis 14:600–607

    Article  CAS  PubMed  Google Scholar 

  15. Le QM, Kiso M, Someya K, Sakai YT, Nguyen TH, Nguyen KH, Pham ND, Ngyen HH, Yamada S, Muramoto Y, Horimoto T, Takada A, Goto H, Suzuki T, Suzuki Y, Kawaoka Y (2005) Avian flu, isolation of drug-resistant H5N1 virus. Nature 437:1108

    Article  CAS  PubMed  Google Scholar 

  16. Le QM, Sakai-Tagawa Y, Ozawa M, Ito M, Kawaoka Y (2009) Selection of H5N1 influenza virus PB2 during replication in humans. J Virol 83(10):5278–5281

    Article  CAS  PubMed  Google Scholar 

  17. Li C, Hatta M, Nidom CA, Muramoto Y, Watanabe S, Neumann G, Kawaoka Y (2010) Reassortment between avian H5N1 and human H3N2 influenza viruses creates hybrid viruses with substantial virulence. Proc Natl Acad Sci USA 107(10):4687–4692

    Article  CAS  PubMed  Google Scholar 

  18. Li Z, Jiang Y, Jiao P, Wang A, Zhao F, Tian G, Wang X, Yu K, Bu Z, Chen H (2006) The NS1 gene contributes to the virulence of H5N1 avian influenza viruses. J Virol 80(22):11115–11123

    Article  CAS  PubMed  Google Scholar 

  19. Lipatov AS, Evseenko VA, Yen HL, Zaykovskaya AV, Durimanov AG, Zolotykh SI, Netesov SV, Drozdov IG, Onishchenko GG, Webster RG, Shestopalov AM (2007) Influenza (H5N1) viruses in poultry, Russian Federation, 2005–2006. Emerg Infect Dis 13:539–546

    Article  CAS  PubMed  Google Scholar 

  20. Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang XW, Zhang XL, Zhao D, Wang G, Feng Y, Ma J, Liu W, Wang J, Gao GF (2005) Highly pathogenic H5N1 influenza virus infection in migratory birds. Science 309:1206

    Article  CAS  PubMed  Google Scholar 

  21. Liu Q, Wang S, Ma G, Pu J, Forbes NE, Brown EG, Liu JH (2009) Improved and simplified recombineering approach for influenza virus reverse genetics. J Mol Genet Med 3(2):225–231

    CAS  PubMed  Google Scholar 

  22. L’vov DK, MIu Shchelkanov, Deriabin PG, Fediakina IT, Burtseva EI, Prilipov AG, Kireev DE, Usachev EV, Aliper TI, Zaberezhnyĭ AD, Grebennikova TV, Galkina IV, Slavskiĭ AA, Litvin KE, Dongurool AM, Medvedev BA, Dokperool MD, Mongush AA, Arapchor MSh, Kenden AO, Vlasov NA, Nepoklonov EA, Suarez D (2006) Isolation of highly pathogenic avian influenza (HPAI) A/H5N1 strains from wild birds in the epizootic outbreak on the Ubsu-Nur Lake (June 2006) and their incorporation to the Russian Federation State Collection of viruses (July 3, 2006). Vopr Virusol 51:14–18

    PubMed  Google Scholar 

  23. Maines TR, Lu XH, Erb SM, Edwards L, Guarner J, Greer PW, Nguyen DC, Szretter KJ, Chen LM, Thawatsupha P, Chittaganpitch M, Waicharoen S, Nguyen DT, Nguyen T, Nguyen HH, Kim JH, Hoang LT, Kang C, Phuong LS, Lim W, Zaki S, Donis RO, Cox NJ, Katz JM, Tumpey TM (2005) Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J Virol 79:11788–11800

    Article  CAS  PubMed  Google Scholar 

  24. Matrosovich M, Zhou N, Kawaoka Y, Webster R (1999) The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J Virol 73:1146–1155

    CAS  PubMed  Google Scholar 

  25. Mibayashi M, Martínez-Sobrido L, Loo YM, Cárdenas WB, M Gale Jr, García-Sastre A (2007) Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J Virol 81:514–524

    Article  CAS  PubMed  Google Scholar 

  26. Noah DL, Twu KY, Krug RM (2003) Cellular antiviral responses against influenza A virus are countered at the posttranscriptional level by the viral NS1A protein via its binding to a cellular protein required for the 3′ end processing of cellular pre-mRNAS. Virology 307:386–395

    Article  CAS  PubMed  Google Scholar 

  27. Opitz B, Rejaibi A, Dauber B, Eckhard J, Vinzing M, Schmeck B, Hippenstiel S, Suttorp N, Wolff T (2007) IFNbeta induction by influenza A virus is mediated by RIG-I which is regulated by the viral NS1 protein. Cell Microbiol 9:930–938

    Article  CAS  PubMed  Google Scholar 

  28. Reed LJ, Muench H (1938) A simple method for estimating fifty percent endpoints. Am J Hyg 27:493–497

    Google Scholar 

  29. Richt JA, Lekcharoensuk P, Lager KM, Vincent AL, Loiacono CM, Janke BH, Wu WH, Yoon KJ, Webby RJ, Solórzano A, García-Sastre A (2006) Vaccination of pigs against swine influenza viruses by using an NS1-truncated modified live-virus vaccine. J Virol 80:11009–11018

    Article  CAS  PubMed  Google Scholar 

  30. Shaw M, Cooper L, Xu X, Thompson W, Krauss S, Guan Y, Zhou N, Klimov A, Cox N, Webster R, Lim W, Shortridge K, Subbarao K (2002) Molecular changes associated with the transmission of avian influenza a H5N1 and H9N2 viruses to humans. J Med Virol 66(1):107–114

    Article  CAS  PubMed  Google Scholar 

  31. Shinya K, Makino A, Ozawa M, Kim JH, Sakai-Tagawa Y, Ito M, Le QM, Kawaoka Y (2009) Ostrich involvement in the selection of H5N1 influenza virus possessing mammalian-type amino acids in the PB2 protein. J Virol 83(24):13015–13018

    Article  CAS  PubMed  Google Scholar 

  32. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, Lohman K, Daum LT, Suarez DL (2002) Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol 40:3256–3260

    Article  CAS  PubMed  Google Scholar 

  33. Steel J, Lowen AC, Mubareka S, Palese P (2009) Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627 K or 627E/701 N. PLoS Pathog 5(1):e1000252

    Article  PubMed  Google Scholar 

  34. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  35. Office International des Epizooties (2004) OIE manual of diagnostic tests and vaccines for terrestrial animals. Office International des Epizooties, Paris, France

    Google Scholar 

  36. Zhou H, Yu Z, Hu Y, Tu J, Zou W, Peng Y, Zhu J, Li Y, Zhang A, Yu Z, Ye Z, Chen H, Jin M (2009) The special neuraminidase stalk-motif responsible for increased virulence and pathogenesis of H5N1 influenza A virus. PLoS One 4:e6277

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Gavin J. Smith, Dr. Yi Guan, Dr. Malik J.S. Peiris, State Key Laboratory of Emerging Infectious Diseases & Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China, and Dr. Erica Spackman, Dr. David E. Swayne, Southeast Poultry Research Laboratory US Department of Agriculture, Athens, Georgia, for valuable support. This study was supported by a grant BII ISTC 3436 and by Russian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirill Sharshov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharshov, K., Romanovskaya, A., Uzhachenko, R. et al. Genetic and biological characterization of avian influenza H5N1 viruses isolated from wild birds and poultry in Western Siberia. Arch Virol 155, 1145–1150 (2010). https://doi.org/10.1007/s00705-010-0676-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-010-0676-2

Keywords

Navigation