Skip to main content

Advertisement

Log in

GP4 of porcine reproductive and respiratory syndrome virus contains a neutralizing epitope that is susceptible to immunoselection in vitro

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Glycoprotein 4 (GP4) of porcine reproductive and respiratory syndrome virus (PRRSV) contains a highly variable neutralizing epitope. The present study aimed to investigate whether this epitope is susceptible to immunoselection by antibodies in vitro. Cultivation of PRRSV in vitro in the continuous presence of neutralizing monoclonal antibodies (mAbs) directed against this epitope resulted in the selection of mAb-resistant PRRSV strains within five passages. Comparison of the GP4 amino acid (aa) sequence of the original PRRSV strain with the GP4 aa sequences of the mAb-resistant PRRSV strains revealed aa substitutions within this epitope. In conclusion, this study shows that the neutralizing epitope on GP4 is susceptible to immunoselection by antibodies in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Abbreviations

aa:

Amino acid

CHO:

Chinese hamster ovary

GP:

Glycoprotein

hpi:

Hours post-inoculation

LV:

Lelystad virus

M:

Membrane protein M

mAb:

Monoclonal antibody/antibodies

N:

Capsid protein

ORF:

Open reading frame

PRRS:

Porcine reproductive and respiratory syndrome

PRRSV:

Porcine reproductive and respiratory syndrome virus

TCID50 :

Tissue culture infectious dose with a 50% end point

WB:

Western blot

References

  1. Allende R, Laegreid WW, Kutish GF, Galeota JA, Wills RW, Osorio FA (2000) Porcine reproductive and respiratory syndrome virus: description of persistence in individual pigs upon experimental infection. J Virol 74:10834–10837

    Article  PubMed  CAS  Google Scholar 

  2. Cavanagh D (1997) Nidovirales: a new order comprising Coronaviridae and Arteriviridae. Arch Virol 142:629–633

    PubMed  CAS  Google Scholar 

  3. Chang CC, Yoon KJ, Zimmerman JJ, Harmon KM, Dixon PM, Dvorak CM, Murtaugh MP (2002) Evolution of porcine reproductive and respiratory syndrome virus during sequential passages in pigs. J Virol 76:4750–4763

    Article  PubMed  CAS  Google Scholar 

  4. Chen Z, Li K, Plagemann PG (2000) Neuropathogenicity and sensitivity to antibody neutralization of lactate dehydrogenase-elevating virus are determined by polylactosaminoglycan chains on the primary envelope glycoprotein. Virology 266:88–98

    Article  PubMed  CAS  Google Scholar 

  5. Collins JE, Benfield DA, Christianson WT, Harris L, Hennings JC, Shaw DP, Goyal SM, McCullough S, Morrison RB, Joo HS et al (1992) Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. J Vet Diagn Invest 4:117–126

    PubMed  CAS  Google Scholar 

  6. Delputte PL, Vanderheijden N, Nauwynck HJ, Pensaert MB (2002) Involvement of the matrix protein in attachment of porcine reproductive and respiratory syndrome virus to a heparinlike receptor on porcine alveolar macrophages. J Virol 76:4312–4320

    Article  PubMed  CAS  Google Scholar 

  7. Delputte PL, Meerts P, Costers S, Nauwynck HJ (2004) Effect of virus-specific antibodies on attachment, internalization and infection of porcine reproductive and respiratory syndrome virus in primary macrophages. Vet Immunol Immunopathol 102:179–188

    Article  PubMed  CAS  Google Scholar 

  8. Delputte PL, Costers S, Nauwynck HJ (2005) Analysis of porcine reproductive and respiratory syndrome virus attachment and internalization: distinctive roles for heparan sulphate and sialoadhesin. J Gen Virol 86:1441–1445

    Article  PubMed  CAS  Google Scholar 

  9. Domingo E (1998) Quasispecies and the implications for virus persistence and escape. Clin Diagn Virol 10:97–101

    Article  PubMed  CAS  Google Scholar 

  10. Drew TW, Lowings JP, Yapp F (1997) Variation in open reading frames 3, 4 and 7 among porcine reproductive and respiratory syndrome virus isolates in the UK. Vet Microbiol 55:209–221

    Article  PubMed  CAS  Google Scholar 

  11. Duan X, Nauwynck HJ, Pensaert MB (1997) Virus quantification and identification of cellular targets in the lungs and lymphoid tissues of pigs at different time intervals after inoculation with porcine reproductive and respiratory syndrome virus (PRRSV). Vet Microbiol 56:9–19

    Article  PubMed  CAS  Google Scholar 

  12. Galfre G, Milstein C (1981) Preparation of monoclonal antibodies: strategies and procedures. Methods Enzymol 73:3–46

    Article  PubMed  CAS  Google Scholar 

  13. Hedges JF, Balasuriya UB, Timoney PJ, McCollum WH, MacLachlan NJ (1999) Genetic divergence with emergence of novel phenotypic variants of equine arteritis virus during persistent infection of stallions. J Virol 73:3672–3681

    PubMed  CAS  Google Scholar 

  14. Kim HS, Kwang J, Yoon IJ, Joo HS, Frey ML (1993) Enhanced replication of porcine reproductive and respiratory syndrome (PRRS) virus in a homogeneous subpopulation of MA-104 cell line. Arch Virol 133:477–483

    Article  PubMed  CAS  Google Scholar 

  15. Kim JK, Fahad AM, Shanmukhappa K, Kapil S (2006) Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10. J Virol 80:689–696

    Article  PubMed  CAS  Google Scholar 

  16. Labarque GG, Nauwynck HJ, Van Reeth K, Pensaert MB (2000) Effect of cellular changes and onset of humoral immunity on the replication of porcine reproductive and respiratory syndrome virus in the lungs of pigs. J Gen Virol 81:1327–1334

    PubMed  CAS  Google Scholar 

  17. Le Gall A, Albina E, Magar R, Gauthier JP (1997) Antigenic variability of porcine reproductive and respiratory syndrome (PRRS) virus isolates. Influence of virus passage in pig. Vet Res 28:247–257

    PubMed  CAS  Google Scholar 

  18. Lefebvre DJ, Costers S, Van Doorsselaere J, Misinzo G, Delputte PL, Nauwynck HJ (2008) Antigenic differences among porcine circovirus type 2 strains, as demonstrated by the use of monoclonal antibodies. J Gen Virol 89:177–187

    Article  PubMed  CAS  Google Scholar 

  19. Liu L, Castillo-Olivares J, Davis-Poynter NJ, Baule C, Xia H, Belak S (2008) Analysis of ORFs 2b, 3, 4, and partial ORF5 of sequential isolates of equine arteritis virus shows genetic variation following experimental infection of horses. Vet Microbiol 129:262–268

    Article  PubMed  CAS  Google Scholar 

  20. Meulenberg JJ, Petersen-den Besten A, De Kluyver EP, Moormann RJ, Schaaper WM, Wensvoort G (1995) Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus. Virology 206:155–163

    Article  PubMed  CAS  Google Scholar 

  21. Meulenberg JJ, Petersen-den Besten A (1996) Identification and characterization of a sixth structural protein of Lelystad virus: the glycoprotein GP2 encoded by ORF2 is incorporated in virus particles. Virology 225:44–51

    Article  PubMed  CAS  Google Scholar 

  22. Meulenberg JJ, van Nieuwstadt AP, van Essen-Zandbergen A, Langeveld JP (1997) Posttranslational processing and identification of a neutralization domain of the GP4 protein encoded by ORF4 of Lelystad virus. J Virol 71:6061–6067

    PubMed  CAS  Google Scholar 

  23. Nauwynck HJ, Pensaert MB (1995) Effect of specific antibodies on the cell-associated spread of pseudorabies virus in monolayers of different cell types. Arch Virol 140:1137–1146

    Article  PubMed  CAS  Google Scholar 

  24. Novella IS, Gilbertson DL, Borrego B, Domingo E, Holland JJ (2005) Adaptability costs in immune escape variants of vesicular stomatitis virus. Virus Res 107:27–34

    Article  PubMed  CAS  Google Scholar 

  25. Oleksiewicz MB, Botner A, Toft P, Grubbe T, Nielsen J, Kamstrup S, Storgaard T (2000) Emergence of porcine reproductive and respiratory syndrome virus deletion mutants: correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein. Virology 267:135–140

    Article  PubMed  CAS  Google Scholar 

  26. Oleksiewicz MB, Botner A, Toft P, Normann P, Storgaard T (2001) Epitope mapping porcine reproductive and respiratory syndrome virus by phage display: the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes. J Virol 75:3277–3290

    Article  PubMed  CAS  Google Scholar 

  27. Ostrowski M, Galeota JA, Jar AM, Platt KB, Osorio FA, Lopez OJ (2002) Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain. J Virol 76:4241–4250

    Article  PubMed  CAS  Google Scholar 

  28. Piontkivska H, Hughes AL (2006) Patterns of sequence evolution at epitopes for host antibodies and cytotoxic T-lymphocytes in human immunodeficiency virus type 1. Virus Res 116:98–105

    Article  PubMed  CAS  Google Scholar 

  29. Plagemann PG, Rowland RR, Even C, Faaberg KS (1995) Lactate dehydrogenase-elevating virus: an ideal persistent virus? Springer Semin Immunopathol 17:167–186

    Article  PubMed  CAS  Google Scholar 

  30. Plagemann PG (2004) The primary GP5 neutralization epitope of North American isolates of porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 102:263–275

    Article  PubMed  CAS  Google Scholar 

  31. Rowland RR, Steffen M, Ackerman T, Benfield DA (1999) The evolution of porcine reproductive and respiratory syndrome virus: quasispecies and emergence of a virus subpopulation during infection of pigs with VR-2332. Virology 259:262–266

    Article  PubMed  CAS  Google Scholar 

  32. van Nieuwstadt AP, Meulenberg JJ, van Essen-Zanbergen A, Petersen-den Besten A, Bende RJ, Moormann RJ, Wensvoort G (1996) Proteins encoded by open reading frames 3 and 4 of the genome of Lelystad virus (Arteriviridae) are structural proteins of the virion. J Virol 70:4767–4772

    PubMed  Google Scholar 

  33. Weiland E, Wieczorek-Krohmer M, Kohl D, Conzelmann KK, Weiland F (1999) Monoclonal antibodies to the GP5 of porcine reproductive and respiratory syndrome virus are more effective in virus neutralization than monoclonal antibodies to the GP4. Vet Microbiol 66:171–186

    Article  PubMed  CAS  Google Scholar 

  34. Wensvoort G, Terpstra C, Pol JM, ter Laak EA, Bloemraad M, de Kluyver EP, Kragten C, van Buiten L, den Besten A, Wagenaar F et al (1991) Mystery swine disease in The Netherlands: the isolation of Lelystad virus. Vet Q 13:121–130

    PubMed  CAS  Google Scholar 

  35. Wills RW, Doster AR, Galeota JA, Sur JH, Osorio FA (2003) Duration of infection and proportion of pigs persistently infected with porcine reproductive and respiratory syndrome virus. J Clin Microbiol 41:58–62

    Article  PubMed  Google Scholar 

  36. Wissink EH, van Wijk HA, Kroese MV, Weiland E, Meulenberg JJ, Rottier PJ, van Rijn PA (2003) The major envelope protein, GP5, of a European porcine reproductive and respiratory syndrome virus contains a neutralization epitope in its N-terminal ectodomain. J Gen Virol 84:1535–1543

    Article  PubMed  CAS  Google Scholar 

  37. Wu WH, Fang Y, Farwell R, Steffen-Bien M, Rowland RR, Christopher-Hennings J, Nelson EA (2001) A 10-kDa structural protein of porcine reproductive and respiratory syndrome virus encoded by ORF2b. Virology 287:183–191

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Carine Boone, Lieve Sys, Chantal Vanmaercke and Dries Helderweirt for excellent technical assistance. S. Costers is supported by a doctoral grant from the special research fund of Ghent University (011D18904). D. J. Lefebvre receives a “Dehousse”-grant from Ghent University, funded by the EU. P. L. Delputte is a post-doctoral fellow from the Special Research Fund of Ghent University (B/06524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Costers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costers, S., Lefebvre, D.J., Van Doorsselaere, J. et al. GP4 of porcine reproductive and respiratory syndrome virus contains a neutralizing epitope that is susceptible to immunoselection in vitro. Arch Virol 155, 371–378 (2010). https://doi.org/10.1007/s00705-009-0582-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-009-0582-7

Keywords

Navigation